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ABSTRACT

Performance of a convolutional neural network (CNN) based white-matter lesion segmentation in magnetic reso-
nance (MR) brain images was evaluated under various conditions involving different levels of image preprocessing
and augmentation applied and different compositions of the training dataset. On images of sixty multiple scle-
rosis patients, half acquired on one and half on another scanner of different vendor, we first created a highly
accurate multi-rater consensus based lesion segmentations, which were used in several experiments to evaluate
the CNN segmentation result. First, the CNN was trained and tested without preprocessing the images and
by using various combinations of preprocessing techniques, namely histogram-based intensity standardization,
normalization by whitening, and train dataset augmentation by flipping the images across the midsagittal plane.
Then, the CNN was trained and tested on images of the same, different or interleaved scanner datasets using
a cross-validation approach. The results indicate that image preprocessing has little impact on performance
in a same-scanner situation, while between-scanner performance benefits most from intensity standardization
and normalization, but also further by incorporating heterogeneous multi-scanner datasets in the training phase.
Under such conditions the between-scanner performance of the CNN approaches that of the ideal situation, when
the CNN is trained and tested on the same scanner dataset.
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1. INTRODUCTION

Neuroimaging biomarkers of brain lesions based on quantification of magnetic resonance (MR) images represent
important surrogates of clinical signs in a number of neurological and cerebrovascular diseases, and mental
disorders. In multiple sclerosis (MS) patients, for instance, inflammatory activity in brain parenchyma and
spinal cord is visible as hyperintense lesions in T2-weighted and fluid attenuated inversion recovery (FLAIR)
MR modalities, which typically occur very early in the disease onset. For this reason, monitoring of disease
development and treatment response1 and outcome prediction2 are increasingly relying on biomarkers like lesion
volume and count. To obtain such biomarkers, accurate segmentation of lesions in the MR images is required.

Lesion segmentation from brain MR images is challenging because of complex brain anatomy and high
variability of possible locations, shapes and appearances of lesions, but also due to the inter-site and inter-
scanner variabilities of image quality. Since manual lesion segmentation is not practical for routine use and also
prone to intra- and inter-rater variabilities3 several automated methods were developed.4

In recent years automated medical image segmentation is almost exclusively in the domain of machine learning
techniques, like convolutional neural networks (CNNs). Some CNN based methods were also applied for white-
matter lesion segmentation in MR images of patients with MS. For instance, Brosch et al.5 proposed a lesion
segmentation approach based on deep 3D convolutional encoder networks with shortcut connections similar to
an U-net,6 where two pathways, one convolutional and one deconvolutional, were interconnected so as to act
as a feature extraction and prediction at various scales. To incorporate both local intensity and contextual
information Kamnitsas et al.7 instead proposed a multi-scale 3D CNN, which simultaneously processed two
differently sized 3D image patches regions around a voxel of interest. The obtained segmentations were further
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post processed to remove false positives using a 3D fully connected conditional random field. Ghafoorian et al.8

used a multi-scale network similar to the one used by Kamnitsas et al. , but incorporated additional eight spatial
features and showed that these improve the accuracy of lesion segmentation. Valverde et al.9 used a cascade
of two 3D patch-wise CNNs, where the first network was trained to segment the input images into background
and candidate lesion voxels, while the second network was trained to prune the misclassified voxels of the first
network. Conversely to the aforementioned CNN architectures for lesion segmentation, Havaei et al.10 focused
on increasing the robustness of segmentations to an incomplete or missing MR multi-modal dataset. A CNN
was separately trained for each input modality and the resulting trained layers were combined into a joint model
that was shown to successfully deal with missing input modalities.

Brosch et al.5 and Valverde et al.9 evaluated their corresponding network architectures on the publicly
available MICCAI 2008 MS lesion database,11 where they performed similarly or better compared to more
traditional segmentation methods, thus, showing high suitability of CNNs for the task of MR lesion segmentation.

While the use of CNN based methods demonstrated good performance when applied to homogeneous datasets
(same site, same scanner), the large heterogeneity of the visual appearance and location of lesions and use across
different site and different scanner vendors may substantially deteriorate their performance. Furthermore, their
performance is heavily determined by the quality and size of datasets used in training of the model parameters,
and by ingenuity and craftsmanship in model tuning. Herein, we focus on the use of CNNs in the context of
white-matter lesion segmentation from brain MR images of 60 MS patients and aim to objectively evaluate i) the
impact of image preprocessing like intensity standardization and normalization, and train dataset augmentation
on the segmentation performance; and ii) the impact of training database construction on the segmentation
performance across different MR scanners.

2. MATERIALS AND METHODS

2.1 Image Acquisition

Brain MR scans were acquired for 60 MS patients (47 females/13 males) in the age-span from 25 to 64 years. The
MS phenotype distribution of the patients were the following: 54 relapsing-remitting, 2 secondary progressive,
1 primary progressive, 2 clinically isolated syndrome, and 1 unspecified. A total of 60 MR brain scans were
acquired, 30 on a 3T Siemens Magnetom Trio MR system and the other 30 on a 3T Philips Achieva scanner,
both at the University Medical Center Ljubljana (UMCL). Each scan included a T1-weighted and fluid-attenuated
inversion recovery (FLAIR) images. Acquisition parameters are reported in Table 1.

All 60 subjects have given written informed consent at the time of enrollment for imaging and the UMCL
approved the use of MRI data for this study. The authors confirm that the data were anonymized prior to
analysis.

Table 1: Acquisition parameters of the 3T Siemens Magnetom Trio and 3T Philips Achieva scanners.

T1-weighted FLAIR

Parameters Siemens Philips Siemens Philips

Sampling [pix] 408 × 512 × 36 352 × 165 × 352 192 × 512 × 512 240 × 321 × 240

Spacing [mm] 0.42 × 0.42 × 3.30 0.66 × 1.00 × 0.66 0.47 × 0.47 × 0.80 0.97 × 0.64 × 0.97

Echo time [ms] 20 4.3 392 276

Repetition time [ms] 2000 9.2 5000 4800

Inversion time [ms] 800 - 1800 1650

Flip angle [◦] 120 8 120 90

2.2 Image Preprocessing

Prior to performing lesion segmentation, each subject’s T1-weighted and FLAIR images were preprocessed.
First, images were oriented to RAI patient coordinate space by permuting the image axes accordingly. Next,



both the T1-weighted and FLAIR images were denoised using curvature anisotropic diffusion filtering and then
the denoised T1-weighted image was resampled to isotropic resolution 1.00×1.00×1.00 using cubic interpolation.
Brain region was extracted from the T1w image using Robex,12 followed by mutual-information based registration
of the FLAIR onto the T1-weighted image using affine transformation.13 The FLAIR image was then affine-
transformed and resampled into the space of T1-weighted image space using cubic interpolation. Finally, intensity
inhomogeneity correction14 was performed on each of the brain masked T1w and FLAIR images. The voxels
lying within the brain mask were considered in lesion segmentation.

For the purpose of CNN model training, and for evaluating the impact on the CNN lesion segmentation
performance, the preprocessed T1-weighted and FLAIR images were further enhanced using various combinations
of three following preprocessing techniques: i) intensity normalization15 based on subtracting the mean image
intensity value and dividing by the standard deviation, ii) an intensity standardization by matching intensity
histogram quartiles16 of training and test images, iii) augmentation of training images by sagittal mirroring of
the T1-weighted and FLAIR images, and reference lesion segmentations (cf. Section 2.3).
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Figure 1: CNN model for lesion segmentation based on the DeepMedic framework.7

2.3 Lesion segmentation

The CNN model for lesion segmentation as shown on Fig. 1 was based on the DeepMedic framework,7 which
consists of two branches that are mutually independent until the final fully connected layer. First branch
processes the input image patches of size 25 × 25 × 25, while the second branch processes larger input image
patches of 57 × 57 × 57, but downsampled to 19 × 19 × 19. Each branch consists of eight convolutional layers
using 3 × 3 × 3 kernels. Before the last layer, resolution of the second branch output is matched to the output
of the first branch. Residual connections between layers were not used, while a default number of feature maps
(i.e. [30, 30, 40, 40, 40, 40, 50, 50]) were used in each of the eight convolutional layers. The DeepMedic was
based on Theano backend that utilized an NVidia GTX 970 GPU for computational speedup during training
and test phases. The default optimizer settings were used in the training phase. The only exception was the
number of epochs that was set to 5 for computational purposes, since several CNN models were trained and



the model parameters generally converged after 5 epochs as can be verified in Fig. 2. Image patches from both
T1-weighted and FLAIR MR sequences were input into the CNN model, which was trained and validated with
respect to the reference white-matter lesion segmentations.

The prediction obtained by the CNN model were thresholded at 0.5 to obtain candidate lesion segmentations.
These segmentations were postprocessed by removing all candidate lesions outside the brain mask and those with
volume equal or smaller than 5 mm3 (empirically determined).

For evaluation purposes reference lesion segmentation were created on all 60 image datasets using a manual
delineation protocol and tools as described in Lesjak et al.3 In short, the reference lesion segmentation was
based on a pair of T1-weighted and FLAIR sequences, on which three expert raters individually segmented the
white-matter lesions, using in-house developed semi-automated lesion contouring tools. The raters then revised
the segmentations in several joint sessions to reach a consensus segmentation, which was later used as a reference
for evaluating performance of automated methods.
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Figure 2: Validation of CNN model during training with respect to the number of epochs.

3. EXPERIMENTS

3.1 Setup

The performance of the CNN based lesion segmentation was evaluated in three experiments. In first, the Siemens
datasets were used to train and test the CNN lesion segmentation without any preprocessing and by various
combinations of the three preprocessing techniques, namely the histogram based intensity standardization, train
dataset augmentation by sagittally flipping images and reference masks and intensity normalization. The purpose
was to identify best combination of preprocessing steps. In second, the datasets acquired on either Siemens or
Philips, or both scanner were used for training, while testing was done on the remaining images. In this way we
could observe the impact of scanner and other image characteristics on the CNN lesion segmentation performance.
All experiments were performed in a two-fold cross-validation manner, using half of the datasets for training and
remaining for testing, and repeating the process by reversing the use of the datasets. For instance, to evaluate
intra-scanner lesion segmentation performance, we used 15 datasets for training and the other 15 from the same
scanner for testing and vice versa. In order to evaluate inter-scanner lesion segmentation performance, we used
30 datasets from one scanner for training and 30 datasets from the other scanner for testing. Finally, training
datasets were also composed from the two scanners, i.e. 15 from each scanner for training and the remaining
from both scanner for testing and vice versa.

The obtained lesion segmentations were compared to the reference segmentations using five performance
metrics: 1) Dice similarity coefficient (DSC), 2) true positive rate (TPR), 3) positive predictive value (PPV), 4)
lesion-wise TPR (LTPR), and 5) lesion-wise false positive rate (LFPR).

3.2 Results

In the same-scanner train and test set situation, no particular combination of the preprocessing techniques
applied was found clearly superior to others, also in contrast to using the images without any preprocessing,
as seen from the results in Table 2 and Fig. 3. Solely augmenting the training datasets using sagittally flipped
images yielded worst segmentation performance, despite increased training dataset. In general, best results were



Table 2: Segmentation performance for same-scanner (Siemens) train and test images with different combinations of pre-
processing and train set augmentation: quartile-based intensity histogram standardization (H), training set augmentation
by sagittally flipped images (F) and whitening-like intensity normalization (N). Best values are in bold.

H F N DSC / % TPR / % PPV / % LTPR / % LFPR / %

63.15 ± 19.88 65.69 ± 25.18 64.95 ± 13.26 55.10 ± 11.15 51.83 ± 21.40
X 62.66 ± 20.96 64.90 ± 25.23 65.74 ± 16.17 55.56 ± 11.57 50.49 ± 19.68

X 61.95 ± 24.41 63.99 ± 28.84 66.92 ± 12.84 53.00 ± 11.07 51.41 ± 22.59
X X 64.89 ± 19.35 66.74 ± 23.11 65.79 ± 16.43 54.86 ± 12.84 47.46 ± 18.05

X 62.44 ± 19.95 63.17 ± 26.02 66.21 ± 14.39 53.22 ± 10.27 50.95 ± 21.10
X X 62.44 ± 19.95 63.17 ± 26.02 66.21 ± 14.39 53.22 ± 10.27 50.95 ± 21.10

X X 63.08 ± 19.49 61.92 ± 23.55 70.56 ± 15.78 55.91 ± 10.39 50.43 ± 21.30
X X X 64.72 ± 18.97 63.65 ± 22.33 68.82 ± 16.48 55.59 ± 10.97 46.99 ± 18.47

Table 3: Segmentation performance for mixed-scanner training set (Siemens+Philips) and per scanner test set, shown
with respect to (w.r.t.) different combinations of applied train data preprocessing and augmentation (cf. Table 2).

Test H F N DSC / % TPR / % PPV / % LTPR / % LFPR / %

S
ie

m
en

s 54.44 ± 27.38 57.00 ± 31.92 64.24 ± 15.40 47.83 ± 11.62 64.42 ± 19.59
X X 62.36 ± 20.02 62.68 ± 25.45 67.90 ± 15.04 51.00 ± 9.77 52.42 ± 20.59

X X X 61.84 ± 20.43 61.71 ± 24.59 66.10 ± 16.05 51.41 ± 11.61 55.92 ± 17.44

P
h

il
ip

s 73.29 ± 10.76 78.65 ± 15.27 72.88 ± 15.44 59.20 ± 11.67 51.32 ± 17.17
X X 79.20 ± 8.26 78.07 ± 10.55 83.01 ± 12.83 66.73 ± 10.40 36.92 ± 12.89

X X X 78.48 ± 8.82 73.14 ± 13.13 86.62 ± 6.10 71.56 ± 10.45 48.18 ± 14.82

obtained using combinations of augmentation and intensity normalization or standardization, or both. The
difference between performance metrics among these combinations, however, were not statistically significant
(Wilcoxon signed rank, p < 0.05) compared to other tested combinations.

When using mixed-scanner training set, the use of preprocessing turned out as a must, where the combination
of augmentation and intensity normalization proved best, followed by the combination of all three considered
preprocessing techniques (Table 3). In the latter two cases, the differences compared to the results obtained
without using any preprocessing were statistically significant (Wilcoxon signed rank, p < 0.05).

The choice of combination of training and test datasets, e.g. same or different scanner, or mixed, did have a
substantial impact on the lesion segmentation performance, as can be seen from Fig. 4 and Table 4. In general,
best results were obtained in situations when the training and test datasets were from the same scanner and the
worst results in situations when they were different. In these two scenarios, the values of performance metrics
obtained during testing were statistically significantly different (Wilcoxon signed rank, p < 0.05). Construct-
ing a mixed training dataset by employing MR datasets across the two scanners yielded lesion segmentation
performance comparable to using solely the dataset from the same scanner (Wilcoxon signed rank, p > 0.05).

There is, however, an important difference between the lesion segmentation performance obtained on dataset

Table 4: Segmentation performance w.r.t. different combinations (same, different, mixed) of train and test data.

Test Train DSC / % TPR / % PPV / % LTPR / % LFPR / %

S
ie

m
en

s Siemens 63.08 ± 19.49 61.92 ± 23.55 70.56 ± 15.78 55.91 ± 10.39 50.43 ± 21.30
Philips 46.25 ± 24.92 51.48 ± 32.83 55.15 ± 12.44 46.32 ± 10.05 77.71 ± 16.41

Siemens+Philips 62.36 ± 20.02 62.68 ± 25.45 67.90 ± 15.04 51.00 ± 9.77 52.42 ± 20.59

P
h

il
ip

s Philips 81.49 ± 6.60 80.15 ± 9.86 84.55 ± 9.54 68.61 ± 11.07 41.38 ± 13.11
Siemens 73.00 ± 12.25 71.59 ± 14.36 78.76 ± 14.84 69.95 ± 10.67 38.70 ± 11.24

Siemens+Philips 79.20 ± 8.26 78.07 ± 10.55 83.01 ± 12.83 66.73 ± 10.40 36.92 ± 12.89



from the two scanners, e.g. the best DSC on the Siemens dataset was about 62%, while on Philips it was about
79%. This difference may be attributed to a lower resolution T1-weighted image on the Siemens versus the Philips
dataset (0.42 × 0.42 × 3.00 mm vs. 0.67 × 1.00 × 0.67 mm) and a larger variety and larger number of smaller
white-matter lesions on patients from the Siemens datasets. Example segmentations on cases from Siemens
and Philips datasets are shown in Figure 5. The segmentations in the Siemens case contain a much higher
number of false positives (Figs. 4c and 5), mainly on FLAIR hyperintense regions around the ventricles and in
the medial temporal lobe; the latter is an artifact characteristic of Siemens scanners. These hyperintensities are
less pronounced on the FLAIR images of the Philips scanner. Hence, this indicates that scanner characteristics,
settings and/or artifacts can importantly impact segmentation performance.
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Figure 3: Segmentation performance for (a) same-scanner (Siemens) training and test set and (b) mixed-scanner
(Siemens+Philips) training set and per scanner test set. Shown w.r.t. different combinations of applied train data
preprocessing and augmentation (cf. Table 2).
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Figure 4: Segmentation performance: (a) DSC (b) LTPR, and (c) LFPR for mixed-scanner (Siemens+Philips) training
set and per scanner test set. All three preprocessing techniques were applied (cf. Section 2.2).

4. CONCLUSION

Performance of a CNN based white-matter lesion segmentation in MR brain images was evaluated under various
conditions involving different levels of image preprocessing and augmentation applied and different compositions
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Figure 5: Segmented FLAIR images in the sagittal cross-sections for six patients from the (a) Siemens and (b) Philips
datasets. The three columns from left to right show segmentations w.r.t. training dataset composed of Siemens+Philips,
Philips, and Siemens. True positives, false positives and false negatives are shown in green, red and blue colors, respectively.

of the training dataset. On images of sixty multiple sclerosis patients, half acquired on one and half on an-
other scanner of different vendor, the results indicate that image dataset variability increased by incorporating
heterogeneous multi-scanner datasets in the training phase leverages the performance of white-matter lesion
segmentation with CNNs. Furthermore, it renders the CNN model applicable across datasets from different
scanners with performance level comparable to the ideal situation, when the CNN is trained and tested on the
same dataset.

Image intensity standardization and normalization and dataset augmentation did not improve the perfor-
mance of CNNs in the context of same-scanner lesion segmentation performance. On the contrary, performance



was sometimes even worse as in case of using no preprocessing. Next, inter-scanner variability had an adverse
effect on performance when datasets from different scanners were used in training and testing phases. Using
mixed-scanner datasets for training has managed to overcome this issue. Hence, incorporating as much variabil-
ity in the training datasets by using heterogeneous multi-scanner datasets in the training phase seems to enable
the CNN to extract features more resilient to within- and across-scanner intensity variability.
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