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Reference-free error estimation for
multiple measurement methods

Hennadii Madan, Franjo Pernuš and Žiga Špiclin

Abstract

We present a computational framework to select the most accurate and precise method of measurement of a certain

quantity, when there is no access to the true value of the measurand. A typical use case is when several image analysis

methods are applied to measure the value of a particular quantitative imaging biomarker from the same images. The

accuracy of each measurement method is characterized by systematic error (bias), which is modeled as a polynomial in

true values of measurand, and the precision as random error modeled with a Gaussian random variable. In contrast to

previous works, the random errors are modeled jointly across all methods, thereby enabling the framework to analyze

measurement methods based on similar principles, which may have correlated random errors. Furthermore,

the posterior distribution of the error model parameters is estimated from samples obtained by Markov chain

Monte-Carlo and analyzed to estimate the parameter values and the unknown true values of the measurand. The

framework was validated on six synthetic and one clinical dataset containing measurements of total lesion load, a

biomarker of neurodegenerative diseases, which was obtained with four automatic methods by analyzing brain

magnetic resonance images. The estimates of bias and random error were in a good agreement with the

corresponding least squares regression estimates against a reference.
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1 Introduction

Objective, accurate, and reliable assessment of patient status is the foundation of medical research and is
nowadays possible through several clinical and paraclinical tests that aim to quantify certain physical or
functional characteristics of a patient. For certain medical conditions, there may be several tests available to
measure the same characteristic, and the choice of the best test is often a complex compromise between tests’
performance (i.e. sensitivity and specificity), availability, and associated costs. A compelling class of widely
available and relatively inexpensive paraclinical tests emanates from the field of medical imaging, where
computational image analysis methods enable in vivo extraction of quantitative biological characteristics of
tissue structure or function.

Examples of quantitative measurements derived from medical images include lesion size and count, chemical
tumor marker concentration, relative position of surgical targets, and nearby vulnerable anatomical structures and
rate of change of the above quantities over time. Such data are already being used in diagnosis of a vast multitude
of conditions including trauma, kidney stones and cysts, cancer, multiple sclerosis (MS), Parkinsons disease
progression etc.1–4 as well as in cancer staging5,6 and treatment decision-making.7 Quantitative measurements
are also used for preoperative planning, intraoperative guidance, and postoperative assessment in image-guided
procedures such as surgery, endoscopy, radiation therapy, and biopsy.8,9 Recently a class of scalar measurements
called quantitative imaging biomarker (QIB) defined as ‘‘an objective characteristic derived from an in vivo image
measured on a ratio or interval scale as an indicator of normal biological processes, pathogenic processes or
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a response to a therapeutic intervention’’10 has gained attention for its potential for application as surrogate
endpoints in clinical trials.11–14 However, evaluating the performance and choosing the best image analysis
method to extract a certain QIB is a difficult task.15

Characteristics of image analysis methods generally contribute to the overall cost of measurement. There is
a cost associated with acquisition of images. For example, tumor volume can be measured from different
modalities: computed tomography is generally cheaper than magnetic resonance (MR), which is in turn cheaper
than positron emission tomography (PET). There are costs associated with the act of measurement, i.e. with
conversion from image intensities to numerical values that represent the measured physical quantity. For
instance, employing an experienced radiologist to manually outline a tumor in order to measure its size is more
expensive than using automatic software.

In medical practice, the errors inherent in the measurement method induce further costs for the involved
parties—patients, clinical centers, and society at large. For example, a wrong diagnosis and/or treatment
decision based on an erroneous measurement may cost the patient a great deal of time and money and may
lead to irreversible health deterioration or even death. For a hospital, such a situation is at least a waste of staffs
time and medical supplies that are erroneously prescribed. For the economy, the consequence is a certain loss of
productivity and resources depending on frequency and severity of errors.

As a rule of thumb, methods with smaller errors tend to have higher acquisition and measurement costs.
Therefore, the choice of a measurement method has to be based on the balance between the aforementioned
costs in a given application. Accurate prediction and estimation of the measurement errors is, therefore, of utmost
importance.

1.1 Reference-based error estimation

In medical imaging, the usual way to estimate errors of a given measurement method or methods is based on the
concept of a reference method, often called gold standard. Out of many methods to measure the same quantity,
one that is considered to produce reasonably small errors is chosen as a substitute for the true values of the
measurand. The errors are then estimated from the differences in measurements obtained with a test and the
reference method, both applied to the same sample of patient population. With these data, a comparison of several
measurement methods is enabled through statistical tests for superiority, equivalence, or noninferiority.16,17 To be
useful, reference-based error estimation has to be performed with large samples, representative of the underlying
population. For in vivo images, however, measurements with a reference method are generally prohibitively costly
for large-scale application.

Another, often overlooked, fact is that reference-based error estimation fails inconspicuously when the
reference is not accurate. As was demonstrated by simulation studies for a number of measurement error
estimators, the reported estimates are generally biased and overconfident at the same time when the reference
has low accuracy.16 This means that decisions based on error estimation with low accuracy reference are likely to
be erroneous. Therefore, special care has to be taken to ensure accuracy of the reference and in interpretation of
the results of reference-based error estimation.

In medical imaging, the reference is often not accurate indeed. For example, for measurements based on
segmentation, on which the majority of QIBs are based, the reference is produced from the outlines of
structures of interest made by human experts. It is, however, a well-established fact that these outlines will not
be identical when made by two different experts (inter-rater variability) nor even when the same expert creates two
different outlines (intra-rater variability).18,19 The extent of this variability depends on the properties of the
imaging process, the object imaged, and the experience of the experts. Even excluding the subjective effects, for
objects with high surface to volume ratio (like focal brain lesions), the combination of partial volume effects and
low resolution of clinical scanning protocols may lead to high relative errors in physical size (e.g. volume and linear
dimensions) estimation.20

To deal with the problem of unreliable reference, error-in-variable models have been proposed.21–24

They work by explicitly modeling the variance of the values of the reference method around the unobserved
true value of the measurand. Error-in-variable models have been shown to produce more accurate
uncertainty estimates in synthetic tests with imperfect reference measurements.16 This result comes at a
price—reduced amount of information compared to the known-truth reference has to be compensated by
increased sample size in order to achieve a given level of confidence. More importantly, error-in-variable
models deal only with costs of errors, but do not address the measurement and/or acquisition costs of the
reference method.
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1.2 Reference-free error estimation

The emerging field of reference-free error estimation aims to reduce the costs of acquisition, measurement, and the
errors associated with the reference method. Instead of relying on some dedicated measurement method as
representative of truth, the statistical properties of an ensemble of several different measurement methods are
exploited.25,26

Regression without truth (RWT) proposed in 2002 by Kupinski and Hoppin27 represents a framework for
reference-free error estimation for several measurement methods of a bounded continuous physical quantity. In
RWT, the measurement error of each method is usually modeled as a sum of a linear systematic error and
Gaussian random error. By assuming a prior distribution on the true value of the measurand, it is possible to
marginalize out the unknowns and calculate the point of maximum marginal likelihood using quasi-Newton
optimization. The RWT framework was applied for error estimation in methods for measuring cardiac ejection
fraction,28,29 volume biological activity in SPECT images,30,31 and apparent diffusion coefficient in diffusion-
weighted MR images.32

A number of issues can be identified when applying RWT in practice. First, random errors of a measurement
method are assumed to be independent of those of other methods. However, it is very often of interest to compare
measurement methods that are based on similar principles, but differ in details. Random errors of such variant
methods cannot be considered statistically independent. Second, it is important to initialize the iterative optimizer
close to the unknown true values of the error model parameters or risk convergence to a non-global maximum of
marginal likelihood. Third, as a consequence of the use of an iterative optimizer, only point estimates are returned
without uncertainty quantification. To some extent, this can be remedied by bootstrap application.33 Besides, to
the best of our knowledge, there are no reports of RWT validation against traditional least squares (LS) regression
with a reference method on a clinical dataset.

A drawback expected of any reference-free error estimation, compared to the reference-based, is that methods
have to be applied to larger samples to achieve a given degree of certainty. Nevertheless, the attractiveness of
reference-free estimation is based on the premise that eliminating the costs associated with the reference will
outweigh the costs of acquiring a larger sample.

1.3 Contributions

In this work, we continue the line of thought underlying RWT and aim to rectify the aforementioned deficiencies.
First, possible lack of statistical independence between the random error of different measurement methods is
modeled explicitly. Second, instead of seeking point estimates based on quasi-Newton optimization of marginal
likelihood we employ sampling of the full posterior distribution using Markov chain Monte-Carlo (MCMC). This
enables detailed characterization of modes of the distribution, uncertainty estimates, computation of various
sample statistics, and statistical tests. Third, a set of validation experiment is performed on total lesion load
(TLL) data calculated by four automated methods from clinical magnetic resonance images (MRIs) of 22 MS
patients, for which a gold standard reference was available, as well as on six synthetic datasets, each exhibiting a
varying degree of random error correlation between the methods in ensemble.

2 Framework description

Consider a dataset of images of N patients and M different measurement methods for a certain QIB. Note that
QIB is only a practical example of a measurand to which the framework can be applied. In the rest of the paper, we
use terms QIB and measurand interchangeably. Let xpm denote the value measured with method m for patient p
and let xpt denote the corresponding true value, which is unknown. Given a table of all measurements
X ¼ ½xpm� 2 R

N�M, the question we want to answer is: ‘‘Which method is the most accurate or precise?’’ The
answer is obtained by estimating systematic and random errors of each method.

2.1 Error model

The error model relates the measured xpm to the unknown true value of the measurand xpt. We consider error
models of the form

xpm ¼
XK
k¼0

bkmx
k
pt þ �pm ð1Þ
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where the polynomial represents the systematic error (bias) and �pm the random error (noise). Measurement
methods, albeit different, are often based on similar principles, thus the corresponding random errors �pm
are generally not statistically independent. We model this explicitly by a multivariate Gaussian (MVG)
distribution

�p � N 0,�ð Þ ð2Þ

where �p ¼ ½�p1, �p2, . . . , �pm, . . . , �pM� and � is an M�M covariance matrix.

2.2 Posterior probability

Let Lp denote the likelihood of observing the measurements for a patient p given the true value of the measurand
and error model parameters. By expressing �pm from equation (1) and using equation (2) we obtain

Lp ¼
�
P xpjB,�, xpt
� �

¼ N �p,�
� �

ð3Þ

where xp ¼ ½xp1, xp2, . . . , xpm, . . . , xpM� and B ¼ ½bkm� 2 R
K�M. Since the true values xpt across different patients

p can be considered statistically independent, the likelihood of observing the entire table of measurements X
is given by

L ¼
�
P X j�ð Þ ¼

YN
p¼1

Lp ð4Þ

where � ¼ B,�, xtð Þ is the set of all parameters, including the vector of true values xt ¼ x1t, x2t, . . . , xpt, . . . , xNt

� �
of

the measurand.
By Bayes’s theorem, the posterior probability of � and xt given the measurements X is

P � j Xð Þ ¼
L � P �ð Þ

P Xð Þ
ð5Þ

where Pð�Þ is prior probability of parameters, while PðXÞ is evidence probability, which is a fixed normalization
constant for any observed dataset.

We use MCMC to sample from unnormalized posterior distribution Pð� j XÞ / L � Pð�Þ. The sample is then
analyzed to arrive at the estimates of the error model parameters and their uncertainties. Since MCMC is a well-
established method, we omit the theory behind its workings and refer an interested reader to a simple and short
introduction.34

2.3 Prior specification

To use MCMC, it is necessary to specify the prior distribution Pð�Þ. The dependence between components of � is
defined by the model equation (1) and therefore is encoded in the likelihood function L. When sufficient amount of
data is available, the priors on individual components of � may be specified separately

P �ð Þ ¼ P Bð Þ � P �ð Þ � P xtð Þ ð6Þ

Regarding the systematic error coefficients B, it is reasonable to assume for all m that b0m and b1m are likely
close to zero and one, respectively, while all bkm, k4 1 are close to zero. Note that although correlations between
b0m, b1m, � � �, bKm are expected regardless of the observed data, specifying these in the prior is superfluous: this
information is ingrained in the model and, therefore, is already encoded in the likelihood. We have
found experimentally that N ¼ Kþ 1, i.e. the absolute minimum of patients to consider K-th degree polynomial
for bias, is enough to observe these correlations in the posterior. Therefore, PðBÞ can be specified as a product of
univariate distributions PðBÞ ¼

Q
m

Q
k

PðbkmÞ, where each P bkmð Þ attains a maximum at values 0, 1, 0, . . . for
k ¼ 0, 1, 2, . . .
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Given the following decomposition:

� ¼ SRS ð7Þ

where S ¼ diagð�1, . . . , �MÞ is a diagonal matrix of standard deviations and R is a symmetric correlation matrix, R
can be assigned Lewandowski–Kurowicka–Joe prior35 with �¼ 1, providing uniform distribution of Rij, while
standard deviations can be assigned truncated Jeffreys priors

�m �
1
�m
, �minðmÞ5 �m 5 �maxðmÞ

0, otherwise

(
ð8Þ

Truncation guarantees that the posterior is proper, and boundaries can be assigned from physical
considerations, e.g �minðmÞ may be set to measurement resolution, while �maxðmÞ is limited by the span of
measurements.

Upper and lower bounds dictated by the nature of the measurement or by physiological constraints can be
established for any QIB. Given only this knowledge, for each patient, true QIB values can be assigned a uniform
prior xpt � PðxtÞ ¼

�
Uðxmin, xmaxÞ. Then, since QIB values of one patient do not depend on those of other patients,

we write

P xtð Þ ¼
YN
p¼1

PðxtÞ ¼ P xtð Þ
N

ð9Þ

2.4 Parameter estimation

The expected values of error model parameters can be estimated from the posterior distribution sample obtained
by MCMC. If the posterior is unimodal or has a dominant mode, the expected values of the parameters are
approximated by the expected value of the sample. If the posterior has several well-separated modes with
comparable probability, it means that several distinct mechanisms, i.e. several distinct sets of parameters,
explain the data. In this case, the sample will consist of several clusters—one per mode. The expected values of
parameters for each mechanism are approximated by the expected value of the corresponding cluster (and not the
expected value of the entire sample). In Bayesian model selection the ratio of probabilities of each mechanism is
equal to the ratio of mode masses. The latter can be approximated by the ratio of the number of sample points
belonging to each cluster.

With the error model parameter estimates at hand, the original question can be answered: the measurement
methods can be ranked according to their precision, i.e. �m. Alternatively, methods can be ranked according to
accuracy, e.g. using Chebyshev norm of the estimated bias as a metric

C�m ¼ max
x2�

X
k

bkmx
k � x

�����
����� ð10Þ

where � is the interval of measurand values that is of practical interest.

3 Validation

The proposed framework was validated on six synthetic and one clinical dataset of TLL measurements, obtained
from brain MRI by four different automated methods. For all datasets reference TLL values were given and we
evaluated the framework’s capability to estimate the error model parameters in comparison to LS regression with
respect to the reference.

3.1 Datasets

The clinical dataset was based on the analysis of MR images of 22 patients diagnosed with MS (41.3� 10.5 years
old, 13 females) obtained from the University Medical Centre Ljubljana (UMCL). All patients signed a written
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informed consent at the time of enrollment for imaging, and for this study, the UMCL approved the use of these
data, which were analyzed anonymously.

Each patient’s images were acquired on a 3T Siemens Magnetom Trio MR system at the UMCL using
conventional sequences such as 2D T1- and T2-weighted and 3D FLAIR, from which white matter lesions
were segmented by four automatic algorithms. Three of the algorithms were unsupervised and detected lesions
as abnormal T1-weighted and FLAIR intensities36–38 as compared to major brain tissues, while the fourth
algorithm was a supervised random forest classifier.39 Two of the unsupervised algorithms were similar, one38

being an incremental upgrade of the other.37 Reference lesion segmentations (Figure 1) were created by three
neuroradiologists using semi-automated image analysis tools.40 The three segmentations were merged and jointly
revised by the neuroradiologists to obtain a consensus segmentation, which was then used as a reference.20 To
specify a TLL value from a lesion segmentation, the count of voxels labeled as lesions was multiplied by the
volume of a voxel in an image.

In order to obtain the estimates of the ‘‘true’’ parameter values of the error model in equation (1), an LS
regression of automatic versus manual reference TLL measurements was performed to determine the coefficients
bkm 2 B of quadratic polynomial (K¼ 2) and random error terms �m 2 S for each method (M¼ 4). Correlations of
the residuals estimated the elements of the correlation matrix R. The fit curves are shown in Figure 2, while the
estimated parameter values are summarized in the first section of Table 1.

Synthetic TLL datasets were created such that they resembled the clinical dataset; however, a controlled
amount of random error correlation between one pair of measurement methods was simulated. For each
synthetic dataset, N¼ 22 points were drawn from Uð0, 55Þ, where upper bound of 55 cm3 was chosen to include
the maximal reference TLL value with a certain margin (2.3 cm3). Measurements with M¼ 4 methods were
synthesized by applying equation (1) with bias parameters bkm obtained by LS regression from clinical data
(Table 1). Random errors were drawn from an MVG with covariance matrix structure as defined in equation
(7), where the diagonal elements in matrix S were set to �m as reported in Table 1 and correlation matrix R had the
following form

R ¼

1 R12 0 0

R12 1 0 0

0 0 1 0

0 0 0 1

0
BBB@

1
CCCA ð11Þ

Figure 1. A slice through FLAIR MRI image of a patient with multiple sclerosis presenting characteristic hyperintense lesions (left).

Reference lesion segmentation of the given slice with volumes of corresponding lesions indicated in cm3 (right).
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Six different datasets were created, each with a different value of R12 2 R set as {0.0, 0.5, 0.6, 0.7, 0.8, 0.9} in
order to simulate situations from zero to progressively higher degrees of random error correlation.

3.2 Experiments

Two sets of experiments were performed on all datasets, so that two sets of estimates were obtained. One
experiment involved the proposed joint modeling of random errors, while the other assumed independence of
random errors, equivalent to constraining R to the identity matrix (cf. equation (7)). In the following, we will refer
to the respective experiments as ‘‘proposed’’ and ‘‘control.’’ The assumed prior distributions of parameters were as
follows: b0m � Nð0, 55=3Þ (cm

3); b1m � Nð1, 0:5Þ; b2m � Nð0, 1=55Þ (cm
�3); �m � 1=�m, 0:0015 �m 5 55 (cm3);

Rij � Uð�1, 1Þ (only in ‘‘proposed’’ experiment); xpt � Uð0, 55Þ (cm
3). For evaluation purposes, the reference-

free estimates obtained with MCMC were compared to the LS estimates based on a reference.
An implementation of No U-Turn Sampler(NUTS)41 from Python package pymc3 was used in the experiments.

A draw from an approximation provided by automatic differential variational inference algorithm42 was used to
initialize six parallel chains. For each chain, 19,000 samples were collected, first 9000 samples were discarded as

Table 1. Error model estimates and Chebyshev norm of the bias obtained with LS regression using a gold standard, with MCMC

without a gold standard, in the correct mode of the ‘‘proposed’’ experiment, and in the ‘‘control’’ experiment, and in the incorrect

mode of the ‘‘proposed’’ experiment.

m
b0m b1m b2m �m C½0,55�m b0m b1m b2m �m C½0,55�m

cm3 1 10�3 cm�3 cm3 cm3 cm3 1 10�3 cm�3 cm3 cm3

LS (reference) MCMC correct mode

1 3.7 0.99 �19.2 7.0 54.9 �0.3 1.07 �18.8 6.5 53.0

2 2.7 1.15 �20.1 6.2 49.9 �1.6 1.22 �19.5 5.7 48.3

3 1.2 0.55 �3.6 4.3 34.4 �2.1 0.69 �5.1 4.9 35.1

4 11.6 0.35 4.0 2.2 12.1 9.3 0.38 4.4 2.8 11.2

Control experiment MCMC incorrect mode

1 �0.3 0.25 5.8 2.4 23.6 �0.9 0.28 5.4 2.2 24.1

2 �1.8 0.56 �0.1 1.3 26.4 �2.5 0.63 �1.4 2.0 27.1

3 �1.7 0.87 �12.5 6.7 46.7 �2.2 0.86 �12.5 6.4 45.7

4 10.6 1.01 �16.9 9.0 40.3 9.8 0.99 �16.2 8.9 39.5

MCMC: Markov chain Monte-Carlo; LS: least squares.

Figure 2. Lines of least-squares fit of quadratic polynomial model to TLL measurements extracted from MRI images by four

automatic methods. Corresponding TLL measurements computed from expert consensus segmentations were used as a reference.

The obtained estimates of model parameter values are given in Table 1.
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burn-in, while last 10,000 samples were used for further analysis. This resulted in Gelman–Rubin potential scale
reduction factor R̂5 1:04 for all variables.

To quantify the data prediction ability of obtained error model estimates, we use the following procedure. For
each method, the estimates and the reference values of measurand are plugged into the model equation (1)
assuming �pm ¼ 0 to obtain predicted measurements ~xpm. These are used to calculate the coefficient of
determination R2 for each method

R2
m ¼ 1�

PN
p¼1 ~xpm � xpm

� �2
PN

p¼1 xpm � �xpm
� �2 ð12Þ

These are normalized by the coefficient of determination obtained with the reference bias polynomial
coefficients (LS estimates for the clinical and values used for data generation for the synthetic experiments) and
averaged over all methods to arrive at a single scalar measure of performance

q ¼
1

M

XM
m¼1

R2
m

R2ref
m

ð13Þ

The larger the value the better the prediction. This summary statistic is only dependent on bias coefficient
estimates. To quantify the ability to predict random error dispersion, we use the coefficient of determination of �m
estimates with respect to reference standard deviation

R2
� ¼ 1�

P
�m � �

ref
m

� �2
P

�refm � �
ref
m

� �2 ð14Þ

3.3 Results

In Figure 3, both the ‘‘control’’ and ‘‘proposed’’ estimates of bkm and �m along with 90% credible intervals from
the experiments on the six synthetic datasets are plotted against the values used to generate the data. It is evident
that the true values are always within the 90% credible region for ‘‘proposed’’ experiments, while the ‘‘control’’
estimates become incorrect for R12 4 0:7.

For the clinical dataset, the posterior distribution obtained in the ‘‘proposed’’ experiment contained two well
separated modes (cf. example b21 histogram from method 1 in Figure 4), indicating two possible mechanisms that
could have produced the data. Based on visual assessment of b21 histogram, the modes were separated at
b21 ¼ 5� 10�3 cm�3 and, since the mass was slightly higher for the left mode (i.e. 51% versus 49% of the
sample), it was designated as correct while the right mode was designated as incorrect. In the ‘‘control’’
experiment, the posterior always contained only one mode.

The predictive curves based on a sample from the posterior distribution in the ‘‘proposed’’ experiment are
shown in Figure 5. Apparently, the estimates based on the correct mode adequately describe the data and the
width of the posterior distribution seems representative of the actual uncertainty. This is not the case for the
incorrect mode.

Figure 6 and Table 1 give comparisons of the error model estimates obtained by the proposed framework to
those obtained by the LS regression based on the reference. Parameters b1m, b2m, and �m are in good agreement,
while b0m is slightly offset. This is expected as a result of multicollinearity of the polynomial bias model: small error
in b1m and b2m estimates has a large impact on b0m, but the model’s overall data prediction ability is not affected.

As mentioned earlier, the posterior sample can be used to estimate the true values of the TLL, as shown in
Figure 7 for the clinical dataset. Here, the nature of the incorrect mode is especially apparent—the estimates of the
true value of TLL are virtually identical those from the ‘‘control’’ experiment, both being close to TLL values
measured by the related methods m¼ 1 and m¼ 2. On the other hand, the correct mode yields true TLL estimates
remarkably close to the reference.

The methods may be ranked according to the estimated precision �m or according to estimated accuracy C½0,55�m
shown in Table 1. According to the MCMC estimates, the best precision and accuracy were achieved by method
m¼ 4, which was the supervised method based on random forest classification.39 This result is in agreement with
the LS estimates based on reference. High precision and accuracy of method m¼ 4 is also apparent in Figure 2.
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Note that a reference is required to obtain both the LS estimates and Figure 2, whereas the MCMC estimates were
obtained without the reference.

From Figures 6 and 7, it is evident that the ‘‘proposed’’ experiment yields two modes, where one corresponds to
the correct estimates, while the other is close to the ‘‘control’’ experiment estimates. The correct mode had a higher
maximal value of the posterior probability and higher mass hinting that it represents the mechanism underlying
the data. Using additional knowledge that two of the methods are related, it is possible to select the mode that

Figure 3. Experiments on synthetic datasets: parameter estimates with ‘‘proposed’’ (large black circles) and ‘‘control’’ (small gray

circles) models versus the values used to generate the data. The error bars stretch between 5th and 95th sample percentiles. R12

indicates the correlation coefficient between random errors of methods m¼ 1 and m¼ 2 that was used as a parameter when

generating the datasets.

Figure 4. Experiments on the clinical dataset: posterior sample histograms for error model parameters of the measurement method

m¼ 1. Dashed line indicates the value used to split the sample.
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Figure 6. Experiments on the clinical dataset: parameter estimates with ‘‘proposed’’ (top row) and ‘‘control’’ (bottom row) model

versus their estimates with least-squares regression against manual reference. Black and gray markers correspond to the correct and

incorrect modes, respectively. The error bars stretch between 5th and 95th sample percentiles.

Figure 7. Experiments on the clinical dataset: estimated true values xpt of the measurand, where the gray line indicates corresponding

linear trendline and dashed line the reference TLL.

MCMC: Markov chain Monte-Carlo.

Figure 5. Experiments on the clinical dataset: model predictions of individual points from the posterior sample in the ‘‘proposed’’

experiment for each measurement method. Red and black curves correspond to the correct and incorrect mode, respectively.
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corresponds to the mechanism behind the data by taking into account the posterior distribution of correlation
coefficient R12 between random errors of methods m¼ 1 and m¼ 2 (cf. Figure 8).

The values of q and R2
� obtained on the synthetic and clinical datasets are summarized in Table 2. Apparently

for correlation coefficients up to 0.7, the ability to predict the data and estimate the variance in both ‘‘proposed’’
and ‘‘control’’ experiments is comparable. When significant correlation between random errors of two or more
methods is present, the ‘‘control’’ model starts to yield incorrect estimates.

Figure 8. Experiments on the clinical dataset: posterior sample corner plot for correlation coefficient R12 between methods m¼ 1

and m¼ 2 and quadratic bias coefficient b12 of method m¼ 1. The ‘‘correct’’ mode corresponds to high correlation between random

errors of methods m¼ 1 and m¼ 2, while the ‘‘incorrect’’ mode corresponds to insignificant amount of correlation. Straight black lines

indicate the reference least squares estimates based on reference.

Table 2. Experiments summary.

q R2
�

R12 ‘‘Proposed’’ ‘‘Control’’ ‘‘Proposed’’ ‘‘Control’’

0.00 1.00 0.99 0.51 0.48

0.50 1.10 1.11 0.92 0.87

0.60 1.04 1.04 0.92 0.84

0.70 1.06 0.98 0.54 0.82

0.80 1.23 0.26 0.48 �2.21

0.90 0.85 0.29 0.75 �3.29

Clinical 0.82 �1.31 0.89 �5.77

Note: For synthetic datasets the reference is the values used for data generation for the clinical dataset the reference is the least

squares estimates. q: Mean normalized coefficient of determination; R2
� : coefficient of determination of �m.
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4 Discussion

A framework for performance comparison and ranking of multiple measurement methods in the absence of a
reference was presented. The framework estimates error model parameters along with corresponding uncertainty
of each parameter. A unique feature of the framework is that it is applicable even in situations when using both
related and unrelated measurement methods, which was achieved by modeling correlations between random errors
of the methods. The framework was validated on six synthetic and one clinical MS datasets and produced error
model parameter estimates in good agreement with the truth and the reference-based estimates respectively.

The framework is based on full Bayesian inference and estimates the posterior probability density of model
parameters. This density represents all the knowledge about the model parameters that can be extracted from the
data, the model and the prior densities. Depending on the data, the inference might be ambiguous—multiple
mechanisms, i.e. multiple distinct sets of parameter values, would explain the data. This manifests itself in
posterior being multimodal, as was the case for our clinical dataset. If we want to resolve this ambiguity,
further information (beyond the data, the model, and the priors) is necessary. In our case, this information was
the fact that two of the measurement methods are related and therefore are likely to have correlated random
errors. Generally speaking, possible reasons for this kind of ambiguity include small datasets, a mismatch between
the model and the data-generating process, distinct subpopulations within the data, etc. Investigation into specific
reasons for inference ambiguity in our clinical dataset goes beyond the scope of this article.

In our framework, MVG distribution of random errors is assumed. This must be justified by the physics of the
measurement—it should either grant normal distribution of errors or a distribution for which normal
approximation holds. Our TLL data are an example of the latter: in an approximation of constant per-voxel
true positive and true negative rates of each segmentation algorithm,18 the measurements are distributed
binomially, however, due to high voxel counts normal approximation holds. Note that with LS regression
against known reference deviations from this assumption can be diagnosed by residual analysis. Without a
reference, we see little possibility for such post hoc analysis, so one has to check the assumptions prior to
application.

Another assumption is encoded in the choice of priors for bias coefficients. The priors on bkm express the belief
that the measurements do not deviate too much from the true value of the measurand at least around zero.
Generally this should be true for a genuine measurement method. If ‘‘measurement’’ methods significantly
deviate from these assumptions, the estimates will be biased.

With the error model parameter estimates at hand the methods can be ranked according to some figure of merit.
Early works on RWT27 used a linear bias model and �m

b1m
to rank the methods. Such figure of merit can only be

meaningfully interpreted in the context of a linear bias model, but not for bias models based on higher degree
polynomials. Later works33 used

Fm ¼ E xt �
XK
k

bkmx
k
t � �m

 !2
0
@

1
A ð15Þ

which was calculated analytically. This is again a special situation, since P xtð Þ assumed to be beta-distributed and
bias model linear. Both of the two figures of merit take into account both systematic and random errors. We prefer
to treat these errors separately, since it is possible to have a highly precise measurement method with a large bias,
which is easy to compensate. For example, in context of TLL a segmentation algorithm may consistently, but
incorrectly label the flow-induced artifacts within the ventricles as lesions, thereby generating a large constant bias.
Such consistent incorrect labeling is generally easy to detect and to remove using simple segmentation post-
processing techniques. Hence, we suggest that the choice of the best measurement method should be based
primarily on �m, whereas one should verify that the bias is monotonous within the range of expected
measurand values and the resolution of the method (i.e. d ½

PK
k bkmx

k
t �=dxt) is sufficiently high compared to �m.

To the best of our knowledge, this work is the first to successfully validate a reference-free error estimation
against LS regression estimates on a clinical dataset with a gold standard reference. Although the proposed
framework was inspired by the RWT27 technique, important novel methodology was introduced, which seems
to have contributed to the success of validation. Compared to the RWT, our improved error model captures
correlated random errors, uses joint posterior probability criterion that, besides the error model parameters,
enables the estimation of measurand values, and employs MCMC that technically enables discovery and
characterization of the multiple modes of the posterior that arise when random errors of some of the methods
are sufficiently correlated. Lack of modeling of these correlations is likely to lead to results not consistent with the
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estimates based on a reference. This might be a possible reason that there are no previous reports on RWT
validation on clinical in vivo datasets.

Besides the ability to rank the measurement methods, the analysis of the joint posterior provided by the MCMC
allows to estimate the unknown true values (Figure 7). This opens an avenue for a clinical application in which
several methods are employed to extract a certain QIB value measurements that are further processed with the
proposed framework to compute the estimates of true QIB value. Such estimates may be more representative of
the true value than the measurement values obtained by any individual method and can be better interpreted since
the framework also estimates their uncertainty in the form of a credible region.

Application of the technique to larger clinical datasets is an intriguing opportunity to obtain the estimates with
narrow credible regions and apply more complex error models.

TLL measurements with all measurement methods and with the gold standard, all synthetic datasets and
Python code are available on Github https://github.com/madanh/smmr_code.
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