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Abstract. In clinical practice one often encounters a situation when a
quantity of interest cannot be measured routinely, for reasons such as in-
vasiveness, high costs, the need for special equipment, etc. For instance,
research showed that early cognitive decline can be predicted from vol-
ume (atrophy) of the nucleus basalis of Meynert (NBM), however its
small size makes it difficult to measure from brain magnetic resonance
(MR) scans. We treat NBM volume as an unobservable quantity in a sta-
tistical model, exploiting the structural integrity of the brain, and aim to
estimate it indirectly based on one or more interdependent, but possibly
more accurate and reliable compartmental brain volume measurements
that are easily accessible. We propose a Bayesian approach based on the
previously published reference-free error estimation framework to achieve
this aim. The main contribution is a novel prior distribution parametriza-
tion encoding the scale of the distribution of the unobservable quantity.
The proposed prior is more general and better interpretable than the
original. In addition to unobservable quantity estimates, for each ob-
servable we calculate a figure of merit as an individual predictor of the
unobservable quantity. The framework was successfully validated on syn-
thetic data and on a clinical dataset, predicting the NBM volume from
compartmental segmentations of structural brain MR images, based on
volumes of the whole-brain and hippocampal subfields.
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1 Introduction

Computational analysis of medical images is increasingly used for extracting
quantitative imaging biomarkers (QIBs) — scalar measurements that charac-
terize a certain morphological or functional aspect of the anatomy of interest.
In certain diseases there exist QIBs that allow for disease diagnosis at an early
stage, well before clinical symptoms appear. For instance, recent research showed
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that early cognitive decline can be predicted by measuring volume (atrophy) of
nucleus basalis of Meynert (NBM) [4], however its small size makes it a diffi-
cult target for computational or even manual segmentation on resolution–limited
magnetic resonance (MR) brain images.

Based on the integrity of the brain, one may treat the difficult to measure
NBM as an unobservable quantity and model it in terms of one or several inter-
dependent observed routine compartmental brain volume measurements. Two
questions are then of interest: (a) which observed quantities are the best “pre-
dictors” of the unobservable quantity and (b) what are the likely values of the
unobservable quantity given the observed ones?

To answer these questions we propose a novel Bayesian approach based on
the reference-free error estimation framework [3]. The original framework was
designed to compare measurement methods (MMs) for the same quantity and
has assumptions specific to MMs that are necessary for model identification (see
section 2.1). We lift these assumptions by using additional information about the
distribution of the unobservable quantity (section 2.2) and use the reference-free
estimates to answer the questions (a) and (b) for a synthetic and a clinical
dataset (section 3).

2 Reference-free error estimation

Let q denote the unobservable quantity in patient p, p = 1..N . Assume that
we have M easy-to-measure observables, indexed with m, m = 1..M . Let ypm
be the value of m-th observable in patient p defined by the value of a certain
deterministic function gm(qp), corrupted by random noise ε:

ypm = gm(qp) + εpm (1)

Assuming that gm are analytic and we are dealing with values of qp from a
finite interval [qp, qp], we may approximate gm with a K − th degree polynomial

representing truncated Taylor series about a point qo ∈ [qp, qp]:

ypm =

K∑
k=0

bkm(qp − q0)k + εpm =

K∑
k=0

bkmx
k
p + εpm (2)

where notation xp , qp − q0 is introduced for brevity. Multivariate Gaussian
(MVG) distribution is assumed for random errors:

εp ∼ N (0, Σ) (3)

where εp = (εp1, ..., εpM )> and Σ is a covariance matrix.

From (2) and (3) the likelihood of observing yp , [yp1, ..., ypM ] is:

lp , f(yp | B,Σ, xp) = N (Bχ, Σ) (4)
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where f denotes probability density,B , [bkm] ∈ RKM and χ , [1, xp, x
2
p, . . . , x

K
p ].

The likelihood for the entire set of observations is then:

l , f(Y | θ) =

N∏
p=1

lp (5)

where Y = [ypm] ∈ RN×M , θ = {B,Σ,x}, x = [x1, ..., xN ]. By Bayes’ Theorem
the posterior probability density of θ given the observed values Y is:

f(θ | Y ) ∝ l · f(θ) (6)

where f(θ) is the prior probability density of model parameters. When both
l and f(θ) are specified, one can draw samples from f(θ | Y ) using Markov
chain Monte-Carlo (MCMC). The samples allow estimation of marginal posterior
expectations of quantities of interest with associated uncertainties. For instance
the quantity

Fm , max
q∈[qp,qp]

| g′m(q) |
σm

(7)

can be shown to be equal to the reciprocal of the smallest possible (over q ∈
[qp, qp]) root mean square error (RMSE) of qp estimates, obtained from ypm for
a particular m by inversion of gm. In other words, it is the reciprocal value of
the smallest error one would make if one used only the m-th observable (with
known gm) to estimate q. Quantity in (7) can be interpreted as a figure of merit
of the m-th observable as a predictor of q, thereby providing an answer to the
question (a), while the estimates of qp provide an answer to the question (b), as
posed in the Introduction.

2.1 Priors in previous works

The likelihood l can be shown to be degenerate. This means that, in order
to identify the model, the priors must be sufficiently informative. In previous
research, uniform priors on qp were used in conjunction with peaked informative
priors on bkm:

qp ∼ U(qp, qp), ∀p, (8)

b1m ∼ N (1, σb1), ∀m, (9)

bkm ∼ N (0, σbk), ∀m, k 6= 1, (10)

where qp and qp are either physical or physiological bounds on qp and σbk =

ck(qp − qp)−k, ck ≈ 1. Such priors are based on the assumption that ymp are

(imperfect) measurements of qp and therefore gm are close to identity at least
in the vicinity of q0. To parametrize the covariance matrix a noise variance-
correlation separation strategy [1] based on the following decomposition was
applied:

Σ = SRS (11)
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where S = diag([σ1, ..., σM ]) is a diagonal matrix of random error standard
deviations (STDs) and R = [rij ] a symmetric correlation matrix. Then, STDs
were assigned truncated Jeffreys priors:

f(σm) =

{
1
σm
, σm < σm < σm

0, otherwise
(12)

Truncation guaranteed that the posterior was proper, σm was set to measurement
resolution, while σm was set to (max

p
ypm−min

p
ypm). The correlation matrix was

assigned LKJ priors [2] with η = 1.
This approach was successfully validated on a clinical in vivo dataset and

several synthetic datasets [3]. Despite the usefulness of informative priors on
bkm in the context of MM comparison, these priors are not applicable for general
gm(q).

2.2 Proposed prior

The main contribution in this paper is a novel encoding of prior distribution that
lifts assumptions on bkm that constrain gm to be close to identity. Instead, the
novel prior draws on additional information about the scale of qp distribution
to identify the model. The additional information required is (i) an interval of
likely values of the minimum and maximum (over p) points in the xp sample
encoded as the following conditions:

max
p

qp ≥ qp − ε

min
p
qp ≤ qp + ε

(13)

where ε, ε > 0 are a priori limits on how far the minimum and the maximum
values of qp might reside from the boundaries of the specified uniform prior on
qp, defining the magnitude of the scale of qp distribution; and (ii) a pair of indices
p and p for which it is known that qp > qp, disambiguating the sign of the scale
of qp distribution and determining the order of qp estimates w.r.t. their true
values. The points p and p need not coincide with the maximum and minimum
points. Polynomial coefficients bkm are assigned flat priors, while the priors on
Σ are left unchanged as per (11) and (12).

3 Validation

The capability of the proposed framework to estimate the values of an unob-
servable quantity based on several related and interdependent quantities was
validated on datasets of synthetic and clinical scalar measurements.

We focus on the ability of the framework to estimate Fm in (7) and qp. Each
plot of Fm also reports correlation coefficient ρ with respect to reference values:

ρ ,

∑M
m=1(F̃m − 〈F̃m〉)(F ∗m − 〈F ∗m〉)∑M
m=1(F̃m − 〈F̃m〉)2(F ∗m − 〈F ∗m〉)2

, (14)
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where F̃m is the posterior estimate and F ∗m is the value obtained by least squares
regression against known reference values of q, used in validation. Plots for qp
also provide the RMSE of the estimates:

A ,

√√√√ n∑
p=1

q2p/N (15)

and the smallest RMSE one would obtain if he or she used only the best predictor
with known polynomial coefficients:

A1 , min
m

1/F ∗m. (16)

3.1 Synthetic data

Experiment with synthetic data was conducted to demonstrate the ability of
the framework to estimate the model parameters with highly non-linear gm that
would otherwise have invalidated the assumptions of the original reference-free
error estimation scheme [3]. We have generated N = 30 points from U(0, 55) and,
at those points, evaluated polynomials with coefficients given in table 1. The
obtained values were then perturbed with MVG noise with standard deviations
σm and correlation matrix R from table 1.

Table 1: Parameters used to generate synthetic data.

m b0m b1m b2m σm

1 80 −4.0 0.01 7.0

2 −80 4.0 −0.02 6.2

3 −80 12.0 −0.20 4.3

4 40 −3.5 0.04 2.2

R =


1 0.9 0 0

0.9 1 0 0

0 0 1 0

0 0 0 1



The parameters of the prior were setup as follows: qp = 0, qp = 55, ε = ε = 5,
σm = 0.001, σm = 55, indices p and p were picked at random. K was set to 2,
q0 was set to 0.

Results are given in fig. 1. Figure of merit estimates are in agreement with
the true values and as such allow to answer the question (a). The unobservable
quantity estimates are very close to the known true values and can thus be
used to answer the question (b). Although A > A1, it must be understood that
A is actual RMSE calculated over [qp, qp] , while A1 assumes that q is in the
optimal region for the particular predictor that produces the smallest value of
this quantity.
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Fig. 1: Reference-free estimates of the unobservable variable q and the figure of merit Fm

compared to corresponding known true values for the synthetic dataset. Red and green
points were used to disambiguate the slope sign in regression model (see section 2.2).
See section 3 for definitions of A, A1 and ρ. Dashed lines indicate optimal matching of
estimated and true values.

3.2 Clinical data

Structural T1-weighted MR scans of a group of 40 patients, including 20 healthy
elderly and 20 with mild cognitive impairment, the prodromal stage of Alzheimer’s
disease were analysed. Data for analysis consisted of volumetric measurements
of whole-brain, hippocampus and its subfields, obtained using Freesurfer and
DARTEL segmentation tools. These data were used to attempt to predict the
NBM volume.

The NBM is a small region that is not routinely measured, yet it is associated
with cognitive health and implicated in various neurodegenerative disorders. For
validation purposes, the NBM volume was extracted using a detailed stereotactic
atlas. All volumetric measurements were normalized to the total intracranial
volume to account for the differences in head size between subjects.

The minimum and the maximum points were determined from normalized
reference NBM volumes and provided indices p and p, based on which the re-
maining parameters of the prior were setup: ε and ε were set to 0.02, while
qp and qp were set so that the respective minimum and maximum values were

approximately at qp+ ε/2 and qp+ ε/2. K was set to 1, q0 was set to (qp+qp)/2.
The resulting estimates in fig. 2 show good agreement with the reference. The

RMSE was slightly lower as compared to the RMSE obtainable from a single
predictor, thus successfully answering the question (b). Generally, estimates of
Fm were in good agreement with those obtained using least squares on reference
values, taking into account the associated uncertainty, and therefore enable one
to answer question (a).
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Fig. 2: Top: estimates of normalized NBM volume from volumes of hippocampal sub-
fields for each hemisphere plotted against reference values. Green and red points denote
p and p (section 2.2). Bottom: figure of merit Fm estimates of hippocampal subfields
as predictors for NBM volume plotted against the estimates obtained by least squares
regression with respect to reference values. See section 3 for definitions of A, A1 and
ρ. Dashed lines are identity lines indicating perfect match.
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4 Discussion

Results show that the proposed priors for the reference-free error estimation
framework produce valid estimates of the unobservable quantity (NBM) and
identify best easy-to-measure predictors of this quantity. The proposed priors
are more general, but at the same time are more practical and objective than
the original ones [3]. Instead of vague guesses about coefficients of Taylor ex-
pansion one has to provide interpretable, clearly defined parameters: span of the
unobservable quantity, its uncertainty in the form of tolerance parameters and
a pair of point indices with known value ordering.

For many biomarkers these parameters can be measured or inferred. For
example, lower bound of the biomarker distribution may defined exactly by in-
cluding a healthy control subject in the dataset. If the patient with the highest
value of the biomarker can be identified, then by a single application of a (pos-
sibly expensive) gold standard MM, the uncertainty of the upper bound can be
reduced to the level of the method’s nominal accuracy. To specify the pair of
order-defining indices one may again use controls: for a large class of biomark-
ers a healthy control subject will have the value of the biomarker equal to zero,
which is guaranteed to be less than that of a patient who has the relevant medical
condition. Another possibility is to use up to two applications of a gold standard
method.

Whenever applicable, reference-free error estimation provides significant sav-
ings of time and costs normally associated with reference measurements: those
of human operators, non-standard protocols, high-end acquisition equipment,
material costs (e.g. contrast agents, materials of phantoms), instrumentation
(frames, fiducial markers), administrative overhead, patient recovery and side
effects from invasive measurements, making it an invaluable analytical tool.
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