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Abstract. Validation of quantitative imaging biomarker (QIB) mea-
surement methods is generally based on the concept of a reference
method, also called a gold standard (GS). Poor quality of the GS, for
example due to inter- and intra-rater variabilities in segmentation, may
lead to biased error estimates and thus adversely impact the valida-
tion. Herein we propose a novel framework for benchmarking multiple
measurement methods without a GS. The framework consists of (i) an
error model accounting for correlated random error between measure-
ments extracted by the methods, (ii) a novel objective based on a joint
posterior probability of the error model parameters (iii) Markov chain
Monte Carlo to sample the posterior. Analysis of the posterior enables
not only to estimate the error model parameters (systematic and ran-
dom error) and thereby benchmark the methods, but also to estimate
the unknown true values of QIB. Validation of the proposed framework
on multiple sclerosis total lesion load measurements by four automated
segmentation methods applied to a clinical brain MRI dataset showed a
very good agreement of the error model and true value estimates with
corresponding least squares estimates based on a known GS.

Keywords: Bayesian inference · Markov Chain Monte Carlo ·
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1 Introduction

Computational analysis of medical images is increasingly used in clinical rou-
tine to extract quantitative measurements providing an objective insight into
patients’ disease status and progression. Such measurements or QIBs are usu-
ally scalar indices that characterize a certain morphological or functional aspect
of the anatomy of interest. Often there are many different methods to measure
the same quantity, e.g. various segmentation methods for brain volumetry. The
classical way to validate a given measurement method or methods is based on
the concept of a reference method, often called a “gold standard”.

Gold standard (GS) method is considered to produce reasonably small errors,
but usually requires substantial effort to execute (e.g. manual segmentation)
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and/or is related to high costs. To address this there is a proliferation of grand
challenges [1], which distribute image datasets with a GS for the purpose of
method validation. However, these GSs themselves are generally not validated
and may be of poor quality. For instance, due to inter- and intra-rater variabil-
ities if based on manual segmentation. A likely outcome of validation when an
inaccurate GS is used to evaluate another measurement method is that estimated
errors will be both biased and overconfident [9]. This is critical, since validation
based on a poor GS may lead one to use an inappropriate measurement method
to extract a certain QIB, which may be hazardous to patient health if the QIB
is a surrogate endpoint in a clinical trial or treatment process.

Without using a GS, a statistical framework called regression without truth
(RWT) [8] may be used to benchmark a group of methods, all applied to mea-
sure the same quantity on the same datasets. For each method the RWT esti-
mates a model consisting of systematic and random measurement error through
iterative likelihood maximization, in which the unknown true values of measur-
and are treated as nuisance parameters. The approach has several deficiencies,
namely, the error model assumes statistical independence between the measure-
ment methods, which is often not the case. Second, it is important to initialize
the optimizer close to the unknown “true model” in order to avoid convergence
to a non-global maximum. Finally, it is important to note that RWT has not
yet been validated against a least squares (LS) regression with a known gold
standard method.

In this paper, we propose a novel RWT framework for benchmarking image
analysis methods aimed at QIBs measurement. First, an improved error model
accounts for correlated random error between measurements of different meth-
ods. Second, compared to the maximum likelihood estimate (MLE) used in orig-
inal RWT, a joint posterior probability of the error models across all methods is
formulated and sampled using Markov chain Monte-Carlo (MCMC). One of the
advantages of the novel formulation is that, besides obtaining the error model
parameters to benchmark the methods, one can also estimate the unknown true
values. Validation of the proposed framework on total lesion load (TLL) measure-
ments based on four automated lesion segmentation methods applied to clinical
brain magnetic resonance image (MRI) datasets showed a very good agreement
with the LS estimates based on known GS.

2 Framework Description

Consider a dataset of images of N patients and M different measurement meth-
ods for a certain QIB. Let xpm denote the value of the QIB measured with
method m for patient p and let xpt denote the corresponding true value, which
is unknown. Given a table of all measurements X = [xpm] ∈ R

N×M the question
we want to answer is: “Which method is the most accurate or precise for QIB
extraction?” It can be answered by estimating systematic and random errors of
each method on the same dataset.
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Error Model. For each measurement method m the measured xpm and the
unknown true value xpt are related as:

xpm =
K∑

k=0

bkmxk
pt + εpm, (1)

where the polynomial represents the systematic error (bias) and εpm the random
error (noise). Some of the measurement methods, albeit different, may be based
on similar principles thus the corresponding random errors εpm may be corre-
lated. We model this explicitly by a multivariate Gaussian (MVG) distribution:

εp ∼ N (0, Σ), (2)

where εp = [εp1, εp2, . . . , εpm, . . . , εpM ]� and Σ is an M × M covariance matrix.

Posterior Probability. Let Lp denote the likelihood of observing the measure-
ments for a single given patient p. By expressing εpm from (1) and using (2) we
obtain:

Lp � P (xp | B,Σ, xpt) = N (εp, Σ) = N (xp − B · χ, Σ) , (3)

where xp = [xp1, xp2, . . . , xpm, . . . , xpM ]�, B = [bkm] ∈ R
K×M and χ =

[1, xpt, . . . , x
k
pt, . . . , x

K
pt]

�. Since the true values xpt across different patients p
can be considered statistically independent, the likelihood of observing the entire
table of measurements X is given as:

L � P (X|θ) =
N∏

p=1

Lp, (4)

where θ = (B,Σ,xt) is the set of all parameters, including the true values
xt = [x1t, x2t, . . . , xpt, . . . , xNt] of the measurand.

By Bayes’s theorem the posterior probability of θ and xt given the measure-
ments X is:

P (θ|X) = L · P (θ)/P (X), (5)

where P (θ) is prior probability of parameters, while P (X) is evidence proba-
bility, which is a fixed normalization constant for any observed dataset. We use
Markov chain Monte-Carlo (MCMC) to draw samples from the P (θ|X) without
specifying P (X), and then estimate error model parameters from the samples.

Prior Specification. Before applying MCMC it is necessary to specify P (θ),
which, when sufficient amount of data is available, can be simplified by assuming
statistical independence between B, Σ and xt, i.e.:

P (θ) = P (B) · P (Σ) · P (xt). (6)

Regarding the systematic error coefficients B it is reasonable to assume that
the measurement methods response is at least approximately linear, i.e. b0m
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and b1m are likely close to zero and one, respectively, while all bkm, k > 1
are close to zero. Therefore, P (B) can be specified as a product of univariate
distributions P (B) =

∏
m

∏
k P (bkm), where each P (bkm) attains a maximum

at values 0, 1, 0, . . . for k = 0, 1, 2, . . .
Following Barnard et al. [2] the covariance matrix is decomposed as:

Σ = SRS, (7)

where S = diag(σ1, . . . , σM ) is a diagonal matrix of standard deviations and R
is a symmetric correlation matrix. The standard deviations are assigned unin-
formative Jeffreys’ priors for scale parameters, i.e. σm ∼ 1

σm
, while correlation

coefficients are assigned uniform priors, i.e. Rij ∼ U(−1, 1), i �= j.
Prior on true values xt may be defined based on a certain population-based

distribution P (xt) of the QIB in question. Then, xpt are modeled as i.i.d. accord-
ing to this distribution as P (xt) = P (xt)N . Depending on the particular QIB an
informed decision about the family or shape of P (xt) distribution can be made.
In a general situation, some physical limits of the QIB values can be established
and the prior on xpt is then assigned a uniform distribution according to these
limits.

Parameter Estimation. The posterior (5) specified up to a proportionality
constant can be sampled using MCMC. The expected values of error model
parameters can be estimated from this sample. If the posterior is unimodal or
has a dominant mode the expected values of the parameters are approximated
by the expected value of the sample. If the posterior has several well separated
modes with comparable probability it means that several distinct mechanisms
i.e. several distinct sets of parameters explain the data. In this case the sample
will consist of several clusters – one per mode. In Bayesian model selection the
ratio of probabilities of each mechanism is equal to the ratio of mode masses
(evidences). The latter is approximated by the ratio of the number of sample
points belonging to each cluster. The expected values of parameters for each
mechanism are approximated by the expected value of the corresponding cluster.

With the error model parameter estimates at hand the original question can
be answered: the methods can be ranked according to their precision, i.e. σm.
Alternatively, methods can be ranked according to accuracy, e.g. using root mean
square error (RMSE) obtained by plugging the estimates into (1) and simulating
measurements based on a random sample of xpt.

3 Validation

The proposed framework was validated on a set of TLL measurements, extracted
from MRI brain images by four different automated lesion segmentation meth-
ods. We evaluated the capability of the proposed framework to recover the values
of error model parameters and the unknown true TLL in comparison to the ref-
erence values obtained by LS regression with respect to a gold standard TLL.
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Dataset and Gold Standard. Clinical dataset was based on the analysis of
MRI images of 22 patients diagnosed with multiple sclerosis (MS) (41.3 ± 10.5
years old, 13 females). Each patient’s images were acquired on a 3T Siemens MRI
using conventional sequences. Three unsupervised methods segmented lesions as
abnormal T1-weighted and FLAIR intensity [4–6] as compared to major brain
tissues, while the fourth method was a supervised random forest classifier learn-
ing algorithm [7]. Additional lesion segmentations were created by three neuro-
radiologists, who used local semi-automated image analysis tools to segment the
lesions. Then they merged and revised the segmentations to reach a consensus
lesion segmentation, which was used as a GS. The TLL value was obtained from
lesion segmentations by counting lesion voxels and multiplying by voxel volume.
Quadratic LS regression of automatic versus gold standard TLL was performed
to determine reference “true” values of the polynomial coefficients bkm ∈ B
(K = 2) and the standard deviations σm ∈ S of the error model (Table 1).
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Fig. 1. Least-squares regression of quadratic polynomial to TLL values extracted from
MRI by four automatic methods, whereas consensus TLL represent the gold standard.

Experiments. Two sets of experiments were performed: first involved the pro-
posed modeling of systematic and random errors, while the second involved an
assumption of independence of random errors, equivalent to constraining R in (7)
to the identity matrix. The second experiment represents a model previously used
for reference-free regression [8], thus it will be used as a baseline for comparison.
In the following we will refer to the respective experiments as “proposed” and
“control”. Both experiments used the following priors: b0m ∼ N (0, 55/3) [cm3],
b1m ∼ N (1, 0.5), b2m ∼ N (0, 1/55) [cm−3], σm ∼ 1/σm [cm3], Rij

1 ∼ U(−1, 1),
xpt ∼ U(0, 55) [cm3]. Note that 55 corresponds to maximum TLL value in the
gold standard rounded up to the nearest five. The estimated error model parame-
ters bkm ∈ B, σm ∈ S and true values xpt were compared to the corresponding
LS estimates obtained with respect to the gold standard TLL values.

For MCMC we were using an ensemble affine-invariant sampler with parallel
tempering provided in Python package emcee [3]. Parallel tempering was setup
with a ladder of 20 temperatures so as to provide a 25% replica exchange accep-
tance rate for Gaussian proposal distributions. For each temperature, ensem-
ble sampler with sample size four times the number of parameters (44 and 38
1 Not applicable to the “control” experiment.
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for the “proposed”and “control”experiments, respectively) was initialized with
a draw from a uniform distribution defined as follows: b0m ∼ U(0, 55) [cm3],
b1m ∼ U(1/3, 3), b2m ∼ U(−50, 50) [cm−3], σm ∼ U(0, 55) [cm3], Rij ∼ U(−1, 1),
xpt ∼ U(0, 55) [cm3]. Sampling was allowed to run for at least 700000 iterations.
The sampler positions from the last 100 iterations were pooled and analyzed.

Fig. 2. Histograms of (marginal) posterior distribution of error model parameters of
the first method (m = 1). Blue line indicates the mode split.
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Fig. 3. Error model estimates obtained in “control”and “proposed” experiments (top
and bottom, respectively) versus least-squares estimates based on gold standard.

Results. The posterior distribution obtained in the “proposed” experiment con-
tained two well separated modes (cf. b21 histogram in Fig. 2), indicating two pos-
sible solutions. Based on visual assessment of b21 histogram in Fig. 2, the modes
were separated at b21 = 5 × 10−3 cm−3 and, since the mass was slightly higher
for the left mode (i.e. 53% versus 47% of the sample), the solutions correspond-
ing to the left and right modes were designated as correct and incorrect. In the
“control” experiment, the posterior contained only one mode.

Figure 3 and Table 1 show the reference LS based error model estimates and
those obtained by the proposed framework. Parameters b1m, b2m and σm are in
good agreement, while b0m are slightly offset. This is expected as a small error
in b1m and b2m estimates has a large impact on b0m, but the overall fit is still
comparable according to the similarities of σm. As mentioned earlier the sample
can be used to estimate the true values of the TLL, as shown in Fig. 4.
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Fig. 4. Estimated true values xpt of the measurand, where the grey line indicates
corresponding linear trendline and dashed line the gold standard TLL.

Methods may be benchmarked and ranked according to the estimated pre-
cision σm or according to estimated RMSE accuracy shown in Table 1. Accord-
ing to the MCMC estimates the best precision and accuracy were achieved by
method m = 3, which was the supervised method based on random forest clas-
sification [7]. This result is in agreement with the LS estimates (Table 1). High
precision and accuracy of method m = 3 is also apparent to Fig. 1. Note that
both the LS estimates and Fig. 1 require the GS, whereas the MCMC estimates
were obtained without the GS.

Table 1. Error model estimates and root mean square error (RMSE) of the estimated
true TLL values obtained with the proposed MCMC based method. The estimates
obtained with LS regression to the gold standard are shown for comparison.

m LS estimates MCMC estimates

b0m b1m b2m σm RMSE b0m b1m b2m σm RMSE

cm3 1 10−3cm−3 cm3 cm3 cm3 1 10−3cm−3 cm3 cm3

1 3.7 0.99 −19.2 7.0 17.6 −0.9 1.10 −18.9 6.6 19.6

2 2.7 1.15 −20.1 6.2 23.0 −2.4 1.24 −19.3 5.8 20.1

3 11.6 0.35 4.0 2.2 8.4 8.6 0.38 5.1 1.1 6.5

4 1.2 0.55 −3.6 4.3 15.0 −2.3 0.63 −3.5 4.9 16.0

In both Figs. 3 and 4 it is evident that in the “proposed” experiment one of
the modes corresponds to the correct estimates, while the other corresponds to
independent random errors (cf. “control” experiment). The correct mode had a
higher maximal value of the posterior probability and higher mass hinting that
it represents the mechanism underlying the data.

4 Discussion

A reference-free framework for benchmarking a group of measurement methods
was presented. Benchmarking is provided though the estimation of systematic
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and random error model parameters for each method, then the methods can be
ranked according to precision based on random error dispersion estimate (σm)
or RMSE accuracy derived from the complete error model.

The framework was validated against a gold standard in the context of QIB
(brain lesion volume) measurement from MRI dataset of real patients. Such a
validation is among first in the literature, to the best of our knowledge. Although
inspired by RWT [8], important novel methodology was introduced in this work,
such as the improved error model, a joint posterior probability criterion and
the use of MCMC to find the estimates. The most significant contribution is
the modeling of statistical dependence of the random error between different
methods (2). The lack of such modeling is likely to lead to results not consistent
with the estimates based on GS. This might be a possible reason that RWT was
not yet validated on real datasets.

Analysis of the joint posterior provided by the MCMC allows to estimate the
unknown true values (Fig. 4). This opens an avenue for a clinical application,
in which several methods are employed to extract a certain QIB value measure-
ments that are further processed with the proposed framework to compute the
estimates of true QIB value. Such estimates are possibly more meaningful than
any of the individual measurements.
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pervised and supervised methods for lesion segmentation. In: Crimi, A., Menze, B.,
Maier, O., Reyes, M., Handels, H. (eds.) BrainLes 2015. LNCS, vol. 9556, pp. 45–56.
Springer, Cham (2016). doi:10.1007/978-3-319-30858-6 5

https://grand-challenge.org/All_Challenges/
https://grand-challenge.org/All_Challenges/
http://www.jstor.org/stable/24306780?seq=1#page_scan_tab_contents
http://www.jstor.org/stable/24306780?seq=1#page_scan_tab_contents
http://dx.doi.org/10.1007/978-3-319-30858-6_5


Benchmarking Quantitative Imaging Biomarker Measurement Methods 771

8. Kupinski, M.A., Hoppin, J.W., Clarkson, E., Barrett, H.H., Kastis, G.A.: Estimation
in medical imaging without a gold standard. Acad. Radiol. 9(3), 290–297 (2002)

9. Obuchowski, N.A., Reeves, A.P., Huang, E.A.: Quantitative imaging biomarkers: a
review of statistical methods for computer algorithm comparisons. Stat. Methods
Med. Res. 24(1), 68–106 (2015)


	Benchmarking Quantitative Imaging Biomarker Measurement Methods Without a Gold Standard
	1 Introduction
	2 Framework Description
	3 Validation
	4 Discussion
	References




