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Abstract—Latent biomarkers are quantities that strongly relate
to patient’s disease diagnosis and prognosis, but are difficult
to measure or even not directly observable. The objective of
this study was to develop, analyze and validate new priors
for Bayesian inference of such biomarkers. Theoretical analysis
revealed a relationship between the estimates inferred from
the model and the true values of measured quantities, and
the impact of the priors. This led to a new prior encoding
scheme that incorporates objectively measurable domain knowl-
edge, i.e. by performing two measurements with a reference
method, which imply scale of the prior distribution. Second,
priors on parameters of systematic error are non-informative,
which enables biomarker estimation from a set of different
quantities. Analysis showed that the volume of nucleus basalis
of Meynert, which is reduced in early stages of Alzheimer’s
dementia and Parkinson’s disease, is inter-related and could
be inferred from compartmental brain volume measurements
performed on routine clinical MR scans. Another experiment
showed that total lesion load, associated to future disability
progression in multiple sclerosis patients, could be inferred from
lesion volume measurements based on multiple automated MR
scan segmentations. Besides, figures of merit derived from the es-
timates could, without comparing against reference gold standard
segmentations, identify the best performing lesion segmentation
method. The proposed new priors substantially simplify the
application of Bayesian inference for latent biomarkers and thus
open an avenue for clinical implementation of new biomarkers,
which may ultimately advance the evidence-based medicine.

Index Terms—Quantitative Imaging Biomarkers, Latent Vari-
able Prediction, Bayesian Inference, Markov Chain Monte Carlo,
Brain Segmentation, Magnetic Resonance Imaging, Validation

I. INTRODUCTION

Advances in evidence-based medicine are based on find-
ing highly sensitive and specific quantities of interest or
biomarkers, which strongly relate to patient’s disease diagnosis
and prognosis. Unfortunately, many such quantities cannot
be measured routinely, for reasons such as invasiveness, high
costs, the need for special equipment, etc. For instance, brain
lesion volume at onset of multiple sclerosis is prognostic of the
future disability progression [1]. However, as routine magnetic
resonance (MR) scans are highly biased due to poor lesion
contrast, partial volume effects, noise, and other artifacts the
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automated and even manual lesion volume measurements are
substantially biased. Hence, such a quantity is difficult to
measure accurately or even not directly observable. We refer
to such quantities as latent biomarkers.

The aim of this work is to estimate the latent biomarker
values in at least two common scenarios: (A) in case of exces-
sive measurement variability and (B) in case the biomarker is
not observable. The corresponding strategies adopted in these
two scenarios are (A’) to apply multiple methods to measure
the same quantity and use the measurements to recover its
unbiased values and (B’) to measure dependent or proxy
surrogate quantities and use the measurements to estimate the
latent quantity.

The main contribution is the development and validation
of practical priors to be used in the context of a Bayesian
inference framework, which can estimate the biomarker values
in the context of the two aforementioned scenarios.

A. Background

Regression without truth (RWT) [2] is a family of tech-
niques for comparison and validation of multiple measurement
methods (MMs) of a certain quantity. These techniques esti-
mate systematic and random errors of the MMs applied to a
common set of subjects, while the reference measurements are
not required. In this way the high cost, cumbersome and labour
intensive creation of reference measurements is eliminated.

Applying the RWT is possible under certain assumptions
about the prior distribution of the latent true values and
assumption of statistical independence of random errors of
different MMs or measurements. With minor variations the
original RWT was applied to various biomarkers [3]–[5].
Unfortunately, the obtained estimates were never validated,
i.e. were never compared to those based on regression with
respect to reference measurements.

The main practical limitation of RWT is that the estimation
procedure relies on substantial prior knowledge about the
measurand distribution, which should either be known or at
least constrained to a certain parametric family. This knowl-
edge may require one to establish reference measurements
on a sample from a related population, which is difficult or
even impossible in certain applications. Besides, the RWT
methodology is based on an ad hoc computational procedure
that is not derived from the first principles.

In [6] the authors reformulated and expanded the RWT into
a full Bayesian inference framework, referred to as Bayesian
reference-free error estimation (BRFEE). This framework was
successfully validated against a known gold standard (GS)
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on a clinical in vivo dataset. The framework drops RWT’s
assumptions about the shape of the measurand distribution in
the sample, and the assumption of statistical independence of
random errors of measurement methods. Instead, it introduces
assumptions that (i) systematic error of a genuine MM has
small magnitude, and (ii) it is encoded in peaked informative
priors on the parameters of model. There is no rigorous
justification for this particular assumptions and setting the
widths of these priors is left upon the operator’s subjective
experience and intuition.

B. Contributions
In this paper, based on previous conference paper [7], we

perform a theoretical analysis of the error model used in
BRFEE and its interplay with the priors. The analysis leads us
to propose a new scheme for prior specification, which encodes
a certain minimal knowledge about location and scale of the
distribution of true values of the measurand. The significant
contributions are (1) that the theoretical analysis establishes a
relationship between BRFEE estimates and the true values of
measured quantities and (2) that the new scheme lifts assump-
tions on the magnitude of systematic errors. Furthermore, the
knowledge required to run the method can now be acquired in
an objective manner with only two measurements performed
with a reference method.

The proposed approach is validated on synthetic and clinical
data measured in vivo in the context of imaging biomarker
extraction. Both aforementioned strategies A and B, one
involving multiple measurements of a single quantity and the
other multiple measurements of dependent or proxy quantities,
were successfully demonstrated.

II. BAYESIAN INFERENCE FRAMEWORK

Consider a set of real scalar functions {gm,m = 1..M} of
a single variable q analytic on (q, q). Let observables ypm be
defined by values of these functions at a finite set of points
qp, p = 1..N , with additive “random noise” ε:

ypm = gm(qp) + εpm (1)

For example, in the context of comparison of M measurement
methods for a biomarker, ypm should be interpreted as individ-
ual measurements in p-th patient with m-th method, qp as the
true value of the quantity being measured (the measurand),
(gm(qp) − qp) is then the systematic error (“bias”) of the
method m and εpm is the random error (“noise”).

Assuming that we are dealing with values of qp from a finite
interval [qp, qp], we may approximate gm with a K−th degree
polynomial representing truncated Taylor series about a point
qo ∈ [qp, qp] as

ypm =
K∑
k=0

bkm(qp − q0)k + εpm (2)

The point q0 is the value where minimal error of approxima-
tion is desired and, for instance, may be fixed in the middle
of the interval of interest as (qp+ qp)/2. For the remainder of
the paper we introduce the following notation

xp , qp − q0 (3)

in order to make expressions clearer and shorter, so that (2)
now becomes

ypm =
K∑
k=0

bkmx
k
p + εpm (4)

We further assume that the random errors of MMs are
jointly distributed as multivariate Gaussian (MVG)

εp ∼ N (0,Σ) (5)

where εp = (εp1, ..., εpM )>, Σ a covariance matrix. It must
be stressed here that this assumption is the easiest to violate
and must be justified from physical considerations. Indeed
the assumption of normality is violated when “outliers” are
expected or when the physical mechanism underlying the
measurement leads to, e.g., binomial distributions with low
number of samples and class imbalance.

From equations (4) and (5) the likelihood of observing yp ,
[yp1, ..., ypM ] is

lp , f(yp | B,Σ, xp) = N (εp,Σ) (6)

where f denotes probability density, B , [bkm] ∈ RK×M .
The likelihood for the entire set of observations is then

l , f(Y | θ) =
N∏
p=1

lp (7)

where Y = [ypm] ∈ RN×M , θ = {B,Σ,x}, x = [x1, ..., xN ].
By Bayes’ Theorem the posterior probability density of θ

given the observed values Y is

f(θ | Y ) ∝ l · f(θ) (8)

where f(θ) is the prior probability density of model pa-
rameters. The joint dependence between components of θ is
captured in the likelihood and individual components of f(θ)
may be defined separately:

f(θ) = f(B) · f(Σ) · f(x). (9)

The prior f(θ) encodes our knowledge of the system before
observing Y . When both l and f(θ) are specified, we can
draw samples from f(θ | Y ) using Markov chain Monte-Carlo
(MCMC) and calculate estimates of quantities of interest and
their uncertainties using those samples.

III. THEORETICAL ANALYSIS

The estimates θ̃ of model parameters θ are determined by
the interplay between the likelihood l and the priors f(θ). The
former are defined by the data and the model, while the latter
are defined by our state of knowledge about model parameters
before we even observe the data. This knowledge is usually
scant and amounts to vague estimates of bkm and of the range
of xp. Nevertheless, even this much plays a crucial role in
this particular mathematical system due to certain properties
of the likelihood function. Here we provide two theorems
describing the peculiar behavior of the likelihood and use them
to analyze the role of various priors on bkm and xp, namely:
(1) uniform f(xp) with flat f(bkm); and (2) same uniform
f(xp) in conjunction with informative f(bkm), as used in our
earlier works. Finally, we introduce (3) the new prior on xp
that is designed to work with flat f(bkm).
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A. Properties of the likelihood
The likelihood (7) does not have a unique maximum point,

instead maximum is defined up to a linear transformation of
xp as shown by the following theorem.

Theorem 1. Let

x′p = α1xp + α0, α0, α1 = const, α1 6= 0 ∀p (10)

then there exist b′km such that
K∑
k=0

bkmx
k
p =

K∑
k=0

b′kmx
′k
p ∀m (11)

and thus
f(Y | B,Σ,x) = f(Y | B′,Σ,x′) (12)

Thus we say that the likelihood is degenerate. Problems with
degenerate likelihood are not amenable to orthodox statistical
analysis, however, they are treatable with Bayesian approach
with sufficiently informative priors. We will discuss various
informative priors further below. Here we first prove that, in
the general case, the likelihood degeneracy is such that the
relationship between x′p and xp cannot be non-linear.

Theorem 2. Let h be analytic on (x, x) and

x′p = h(xp) ∀p (13)

Then (11) has a solution in b′km for general bkm only when

h(xp) = α1xp + α0, α0, α1 = const, α1 6= 0 (14)

A consequence of the above theorems is that the likelihood
alone, without priors, “recovers” xp values only up to a linear
transformation. The priors, hence, play a crucial role in that
they must supply additional information to disambiguate the
scale (α1) and location (α0) of the set of xp.

We must stress here that there are important special config-
urations of bkm when Theorem 2 does not work bkm that may
be encountered in practice. In such cases the estimates of xp
can be biased non-linearly and the framework will break in
general. Two of these important configurations are:

1) when bkm ratio for different k is the same across m. This
could happen when MM are all unbiased or biased only
linearly with zero offset,

2) when bkm = 0 ∀(k,m). This could happen if the
quantities ypm that we try to use as proxy measurements
of the latent biomarker values qp are unrelated to it.

B. Uniform priors for xp
Let x∗p denote the true values of xp. According to The-

orems 1 and 2 a set x′p = α1x
∗
p + α0 produces the same

value of the likelihood as x∗p. Imposing a uniform prior
f(xp) ∼ U(xp, xp) limits the values that α1 and α0 can take:

xp 6 α1x
∗
p + α0 6 xp ∀p (15)

This is equivalent to

xp 6

{
α1x

∗
p + α0, α1 > 0

α1x∗p + α0, α1 < 0

xp 6

{
α1x∗p + α0, α1 > 0

α1x
∗
p + α0, α1 < 0

(16)

where x∗p = max
p

x∗p and x∗p = min
p
x∗p.

Solving for α0 and α1:

α0 6

{
xp − α1x∗p, α1 > 0

xp − α1x
∗
p, α1 < 0

α0 >

{
xp − α1x

∗
p, α1 > 0

xp − α1x∗p, α1 < 0

(17)

This represents a parallelogram in α0, α1 space (Figure 1).
The point (α0, α1) = (0, 1) represents x′p = x∗p. This point lies
near one of the corners inside the parallelogram. The posterior
sample then represents the correct solution “smudged” over
the parallelogram. This renders the estimates very uncertain
(wide) and, more importantly, biased: the expected value of
(α0, α1) is at the center of the parallelogram at (

xp+xp

2 , 0)

corresponding to x′p =
xp+xp

2 = const ∀p — an utterly
useless result that does not even depend on x∗p.

(a)

(b)

(c)

Fig. 1. (a) Regions of equal posterior probability density in (α0, α1) space,
when using uniform priors on xp and flat priors on bkm. T marks the truth
point (0, 1) (b) Similar to (a), but with specifying the uncertainty of the
boundaries xp, xp of the uniform prior on on xp. (c) Relationship between
estimates of x from the posterior modes in (b): mode containing the truth
point T = (0, 1) (red dots) and the one that does not (green dots).

C. Informative priors for bkm (old priors)

The previous subsection demonstrates that, taken alone,
uniform priors on xp are not sufficiently informative to provide
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useful inferences. In our previous work [6] we supplemented
these with informative priors on bkm, which effectively limit
the high likelihood region to the vicinity of the true point. We
describe the full prior specification below for completeness:

xp ∼ U(xp, xp), ∀p, (18)

b1m ∼ N (1, σb1), ∀m, (19)

bkm ∼ N (0, σbk), ∀m, k 6= 1, (20)

where xp and xp are either physical or physiological bounds
on xp and σbk = ck(xp − xp)−k, ck ≈ 1. This choice was
justified from the assumption that genuine MM’s response
should not deviate too much from the identity function,
at least in the vicinity of q0. Separation strategy [8] was
chosen for parametrization of the covariance matrix. First, a
decomposition

Σ = SRS (21)

was applied, where S = diag([σ1, ..., σM ]) is a diagonal ma-
trix of random error standard deviations (STDs) and R = [rij ]
is a symmetric correlation matrix. Then STDs were assigned
Jeffreys priors truncated to ensure that the posterior is proper

f(σm) =

{
1
σm
, σmin(m) < σm < σmax(m)

0, otherwise
(22)

where σmin(m) was set to MM’s resolution and σmax(m) was
limited by the span of the measurements. The correlation
coefficients were Lewandowski Kurowicka Joe (LKJ) priors
with η = 1 [9].

This approach was successfully validated for MMs of total
lesion load (TLL) on a clinical in vivo dataset and several
synthetic sets in [6]. Despite the apparent usefulness of infor-
mative priors on bkm in the context of MM comparison, these
priors are somewhat arbitrary. Besides, they limit the class of
g(x) to functions close to identity.

D. Informative priors for x jointly (new priors)

To avoid the shortcomings of the uniform and old priors and
based on the analysis in sections III-B and III-C we propose a
new prior specification scheme. The aim is to limit the region
of equal likelihood in (α0, α1) space to a small neighborhood
of (0, 1) without constraining the polynomial coefficients bkm.
This is achieved using the following two-step procedure.

We start by recalling that in Bayesian interpretation the
probabilities encode our (human) knowledge of the world.
When a person specifies a U(xp, xp) prior on the components
of x, what is usually meant is not only that xp lie in
[xp, xp], ∀p, but also that they actually span this interval. I.e.
that min

p
xp is close to xp and max

p
xp is close to xp — a

certain scale is implied. This implied scale is, however, not
captured by uniform distribution, but only limited from above:
a sample where all points cluster in a small region around, e.g.,
the center of [xp, xp] is just as likely as a more spread-out
sample or, indeed, any other sample falling completely within

[xp, xp]. The implied scale information can be encoded as the
following conditions:

max
p

x′p , max
p

(α1x
∗
p + α0) > xp − ε

min
p
x′p , min

p
(α1x

∗
p + α0) 6 xp + ε

(23)

where ε, ε > 0 are a priori limits on how far the smallest
and the largest values of x might be from the boundaries of
the specified uniform prior on xp. These equations effectively
define a new prior on x. When taken into account, they
reduce the feasible region in (α0, α1) space to two small
parallelograms (Figure 1) one of which contains the (0, 1)
point. The expected value of the feasible region is still at
(α0, α1) = (

xp+xp

2 , 0), but the posterior will now contain (at
least) two well-separated modes.

The second step is to select the correct mode — the one
containing (α0, α1) = (0, 1). In principle this can be done
after sampling from the posterior. For instance manually —
the incorrect mode estimates will most likely be nonsensi-
cal; but of course, there are problems with this. First, the
choice of the mode to reject will be based on subject matter
knowledge and/or intuition; this is hard to justify formally.
Second, MCMC algorithms encounter various problems (poor
convergence, mixing and sensitivity to initialization) when
sampling from such multimodal posteriors with well-separated
modes.

To specify this information a priori and reduce the effect of
the above problems we note that selecting the correct region
in (α0, α1) space is a binary choice and as such requires
only one additional bit of information. In order to understand
how to acquire this information we must understand what is
the fundamental difference between the two components in
(α0, α1) space. The incorrect component contains the point
(α0, α1) = (xp,−1), for which

x′p = xp − x∗p (24)

This means that x′p values occupy the same span as x∗p,
but in reverse order (Figure 1). To resolve between the two
components it is sufficient to specify the correct order of xp.
A simple way to accomplish this is to find certain p and p,
for which x∗p < x∗p, and demand that

x′p < x′p (25)

Conditions in equations (23) and (25) are straightforward to
implement and we do not pursue an explicit expression for the
prior density thus defined. The expected value of the feasible
region in (α0, α1) space is now at

〈α0〉 =
x∗p(xp + ε/2)− x∗p(xp − ε/2)

x∗p − x∗p

〈α1〉 =
xp − xp
x∗p − x∗p

− 1

2

ε+ ε

x∗p − x∗p
.

(26)

This is equal to exactly 0 and 1 if xp−ε/2 = x∗p and xp+ε/2 =
x∗p. Even in this case, however, there will still remain a certain
residual error in the estimates since generally x∗p would not
coincide with their posterior expectations.
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IV. EXPERIMENTAL VALIDATION

Validation of the BRFEE framework with the proposed new
priors was based on two sets of experiments. The first set is
in the context of genuine MM comparison (scenario A) where
the old priors were established [6]. For validation we apply
both the old and the new priors to a synthetic and clinical
dataset and compare the results.

In the second set of experiments we consider applications,
in which one can only assume a polynomial regression model
with MVG random error, but has no prior knowledge of
the coefficients of the polynomials. For example, if several
quantities that are easy to measure in a living organism and
are at the same time physically, chemically or biologically
related to an unobservable or otherwise difficult to measure
quantity of interest in such a way that the connection between
them can be approximated with (2) and (5), then we may treat
them as surrogate measurement methods in the context of our
framework (scenario B) and attempt the following use cases:
B1: determine which of the surrogate measurement methods

are the best predictors of the quantity of interest;
B2: estimate the values of quantity of interest in the sample

from the values of surrogate measurements.
We perform an experiment with a synthetic dataset to

demonstrate how old priors fail in such application and follow
with an experiment with new priors on a clinical dataset of in
vivo volumetric brain measurements.

All experiments were performed with NUTS sampler
from pymc3 Python package using a model with explicit
parametrization of (α0, α1) and a custom post-processing of
the samples. Details may be found in the documentation
accompanying our code available on GitHub: http://github.
com/madanh/practical priors.

A. Performance metrics

A good MM allows to find qp from ypm with low error.
The magnitude of the systematic error by itself is of little
concern, since once it is known it can be compensated for.
What is important is how sensitive the measurements are to
the changes of the measurand compared to the random error.
A method with gm(q) = const would be utterly useless for
recovering qp, conversely, the higher g′m is relative to εpm the
less error we would make (Figure 2). The quantity

Qm(q) =
| g′m(q) |
σm

(27)

can be used as a MM’s quality measure at point q in the context
of model (1). MMs with non-linear gm would generally
be better in some regions of their range than others. As a
consequence one might want to use different methods for
different ranges of the measurand (Figure 2, right).

We focus on the ability of the framework to estimate the
following figure of merit of an MM as a predictor of q

Fm = max
q
Qm(q) , max

q∈[qp,qp]

| g′m(q) |
σm

(28)

Under BRFEE model’s assumption, this figure of merit is
equal to the root mean square error (RMSE) one would obtain

(a) (b) (c)
Fig. 2. Utility of hypothetical quantity y as a measurement method for
quantity q: (a) y is useless as a measurement method for q; (b) y is useful as
measurement method for q; (c) two quantities that are useful as measurement
methods for q in different ranges.

if he or she used m with known bias coefficients within their
optimal range in order to estimate q. For Fm we provide
Mean absolute error (MAE) and correlation coefficient w.r.t
the reference values as simple summary measures of quality
of estimation defined as follows

MAE ,
1

M

M∑
m=1

| F̃m − F ∗m |, (29)

Corr ,

M∑
m=1

(F̃m − 〈F̃m〉)(F ∗m − 〈F ∗m〉)√
M∑
m=1

(F̃m − 〈F̃m〉)2
√

M∑
m=1

(F ∗m − 〈F ∗m〉)2
, (30)

where F̃m is the estimate and F ∗m is the reference value that
is either known by construction in synthetic data or estimated
using least squares regression and reference q measurements
that were available for BRFEE validation in clinical datasets.

We also introduce additional performance metrics for the
clinical application that uses surrogate measurements in the
second set of experiments. To evaluate BRFEE performance in
use case B1 we use Corr in (30). To gauge the performance
of our approach in the use case B2 we compare RMSE of
BRFEE estimates of the unobservable quantity (q̃p)

A ,

√√√√ n∑
p=1

(q̃p − q∗p)2/N (31)

to the smallest RMSE obtainable with only the best predictor
with known gm

A1 , min
m

1/F ∗m. (32)

B. Genuine measurement methods

The aim of the following two experiments is to compare the
previous old priors and the proposed new priors in a situation
where they are expected to have similar performance, i.e., in
the context of genuine measurement method comparison.

1) Synthetic data: In order to be able to disambiguate
the correct and the reverse-order mode with the new priors
(section III-D) we need to implement condition (25), i.e. to
provide a pair of points p and p such that x∗p < x∗p and
therefore q∗p < q∗p . For all synthetic data we allowed ourselves
the following convenience which does not result in loss of
generality. We fixed p to be equal to one and p to be equal
to N . We generated a set q , {q1, . . . , qN} by sampling N

http://github.com/madanh/practical_priors
http://github.com/madanh/practical_priors
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points from U(qp, qp). Then, if q1 happened to be greater than
qN , we simply swapped the values at the indices 1 and N .

For this experiment we had N = 30, qp = 0 and qp = 55.
Four quadratic polynomials (M = 4,K = 2, coefficients given
in Table I) were evaluated at those points (xp = qp). MVG
noise with standard deviations given in Table I and correlation
matrix

R =


1 0.9 0 0

0.9 1 0 0
0 0 1 0
0 0 0 1

 (33)

was added to produce “measurements” ypm.

TABLE I
PARAMETERS THAT WERE USED TO GENERATE THE SYNTHETIC DATA
THAT ARE NUMERICALLY EQUAL TO bkm AND σm ESTIMATED WITH

LEAST SQUARES (LS) REGRESSION AGAINST CONSENSUS SEGMENTATION
FOR THE TLL EXPERIMENT.

m b0m b1m b2m · 103 σm
1 3.7 0.99 −19.2 7.0
2 2.7 1.15 −20.1 6.2
3 1.2 0.55 −3.6 4.3
4 11.6 0.35 4.0 2.2

We obtained a posterior sample with the old priors with
xp = 0, xp = 55, ck = 1, σm ∼ 1/σm, 0.001 < σm < 55, and
with the new priors with xp = 0, xp = 55, ε = ε = 5 and the
first and the last sample points as order-disambiguating pair.
Both setups returned similar estimates with MAE of the order
of reported credible region (CR) width and Corr close to one.
CR of Fm are slightly wider for the new priors meaning that
they are less informative than the old ones in this experiment.

TABLE II
FIGURE OF MERIT ESTIMATES IN THE EXPERIMENT WITH SYNTHETIC

DATA MODELING MEASUREMENT METHODS.

m Old priors New Priors Truth
1 0.12± 0.08 0.17± 0.12 0.160
2 0.13± 0.08 0.20± 0.12 0.185
3 0.24± 0.10 0.22± 0.12 0.128
4 0.54± 0.19 0.59± 0.20 0.359
MAE 0.09 0.09
Corr 0.89 0.96

2) Total lesion load data: experiment on the clinical dataset
used in our previous works [6] and with the old priors is
repeated with the new priors.

Dataset consisted of total lesion load (TLL) measurements
of 22 multiple sclerosis patients obtained from corresponding
magnetic resonance (MR) images based on manual consensus-
based lesion segmentations [10] and four automated segmenta-
tion methods [11]–[14]. For each the TLL was measured as the
lesion voxel count times voxel volume. The consensus-based
segmentation [10] and were used as gold standard reference
in LS regression to obtain reference values for B and Σ
(Table I). The priors were setup as in the previous experiment
(section IV-B1).

From Table III we see that the estimates are very similar,
with the ones provided by the new priors being slightly less
accurate and certain. Figures of merit shown in Figure 3

are consistent, from which we conclude that the estimates
obtained with the new priors are similar in the domain, where
the assumptions underlying the old priors are justified. The
observed small decrease in nominal performance is because
for the particular scenario the new priors are less informative,
albeit more objective.

Figure 4a shows that the obtained model parameter esti-
mates agree with the LS estimates. Furthermore, the estimates
of TLL values are closer to the gold standard reference values
as compared to any of the individual methods (Figure 4b).

(a) (b)
Fig. 3. Figure of merit estimates in the experiment with total lesion load data
when using (a) old priors and (b) new priors.

TABLE III
FIGURE OF MERIT ESTIMATES IN THE EXPERIMENT WITH TOTAL LESION

LOAD DATA.

m Old priors New priors LS regression
1 0.18± 0.10 0.26± 0.12 0.153
2 0.22± 0.10 0.31± 0.14 0.177
3 0.35± 0.19 0.35± 0.21 0.34
4 0.11± 0.11 0.13± 0.13 0.123
MAE 0.03 0.07
Corr 0.98 0.75

Again the new priors are somewhat less informative than the
old ones, which is reflected in larger CR widths and higher
values of MAE and and lower Corr.

C. Surrogate measurement methods

As mentioned before, we envision a new class of practical
applications of BRFEE framework with the new priors. With
the restrictive assumptions on the shape of gm dropped we may
now attempt to use observable quantities as potentially highly
biased surrogate measurement methods for an unobservable
(or simply hard to measure) quantity of interest. For instance,
we might treat intracellular concentration of some molecule
as an unobservable quantity qp and blood concentrations of
this molecule and its metabolites as ypm. Or treat disease
severity as qp and values of biomarkers for this disease as
ypm. Or, as we showcase below, treat volumes of large easy-
to-segment brain structures as surrogate measurements ypm
of the volume qp of a small structure of interest. We might
be interested in BRFEE estimates of qp (use case B1) or in
comparing predictive power of surrogate measurements w.r.t.
qp in order to use only the best ones in future applications
(use case B2).



2168-2194 (c) 2019 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/JBHI.2019.2945077, IEEE Journal of
Biomedical and Health Informatics

7

M
e
a
s
u
re

m
e
n
ts

Reference values Ref. values

E
s
ti

m
a
te

s

(a) (b)

Fig. 4. (a) Measurements of TLL based on four automated segmentation methods (m = 1, . . . , 4) versus the reference values based on gold standard reference
segmentation (dots). The orange lines represent models obtained by LS fit, gray densities the models obtained from the posterior and dashed lines the identity.
(b) Estimated versus the reference TLL. The bars show the associated uncertainty, while the orange line shows the LS fit.

1) Synthetic data: As in the previous synthetic experiment
(section IV-B1) we generated N = 30 points from U(0, 55)
and evaluated polynomials with coefficients given in Table IV
at those points. The values of the polynomials were then
perturbed with MVG noise with standard deviations from Ta-
ble IV and correlations as per (33). Note that polynomials are
now much further from the identity function than previously.

TABLE IV
PARAMETERS USED TO GENERATE SYNTHETIC DATA FOR THE

UNOBSERVED QUANTITY ESTIMATION EXPERIMENT.

m b0m b1m b2m σm
1 80 −4.0 0.01 7.0
2 −80 4.0 −0.02 6.2
3 −80 12.0 −0.20 4.3
4 40 −3.5 0.04 2.2

Priors were setup as in section IV-B1. Results are presented
in Table V and show that estimates with the old priors were un-
representative of the true values, while the new priors yielded
the estimates close to the truth. Figure of merit estimates with
the old priors have negative correlation, which means they are
not suitable for validation nor for comparison of MMs.

The new priors, on the other hand, maintain good estimation
performance. Figure of merit estimates are highly correlated
with the true values. A graphical representation of the results
obtained with the new priors can be seen in Figure 5. Ap-
parently the estimates of q are very close to the true values.

TABLE V
FIGURE OF MERIT ESTIMATES IN THE EXPERIMENT WITH SYNTHETIC

DATA MODELING OBSERVED QUANTITIES DEPENDENT ON THE
UNOBSERVED QUANTITY AS POLYNOMIAL WITH ARBITRARY MAGNITUDE

OF THE COEFFICIENTS.

m Old priors New Priors Truth
1 0.33± 0.67 0.53± 0.11 0.571
2 0.23± 0.64 0.65± 0.11 0.645
3 0.052± 0.038 4.30± 0.59 2.79
4 0.20± 0.57 2.15± 0.29 1.91
MAE 1.27 0.45
Corr −0.92 0.98

2) Nucleus basalis of Meynert volume: The nucleus basalis
of Meynert (NBM) acts as the principal source of the neuro-
transmitter acetylcholine for the cerebral cortex. Degeneration
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Fig. 5. Synthetic data experiment emulating surrogate measurement methods
for an unobserved quantity. Comparison of (a) the figure of merit, (b) standard
deviations of the random error and (c) unobserved quantity estimates with
their true values. (d, e, f, g) posterior predictive curves and the actual
“measurement” values for four methods. Red and green points mark the order-
disambiguating pair.

of the NBM might herald the onset of a progressing dementia
syndrome, such as Alzheimer’s disease or Parkinson’s disease
with dementia [15], [16]. The region is small and cannot
be segmented from routine MR images using conventional
procedures.

On the other hand, the volume of NBM or any other
structure in an intact brain can be expected to depend on the
volume of structures adjacent to it, and, to a lesser degree,
on the volumes of more distant structures. Another reason for
dependence between volume of some structures is that they
might be affected by a common pathophysiological process.
In this experiment we attempt to use whole brain volumetric
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measurements and measurements of hippocampal subfields
obtained with automatic segmentation procedures to estimate
these dependencies (use case B1) as well as to estimate the
NBM volumes in the sample (use case B2).

We analyzed structural T1-weighted and T2-weighted MRI
scans of 40 participants, including 20 healthy elderly and
20 patients with mild cognitive impairment, the prodromal
stage of Alzheimer’s disease. Automated segmentation of
structural images and volumetric measurements of the whole
brain, the hippocampus and its subfields were performed
using FreeSurfer. All measurements were normalized to the
total intracranial volume to account for the differences in
head size between subjects. The FreeSurfer volumes were
treated as surrogate measurements for NBM volume in BRFEE
with the new priors. For validation purposes reference NBM
volumes were obtained using morphometric analysis of T1-
weighted images and a detailed stereotactic atlas that has
been validated against postmortem anatomy (see [16] for the
detailed procedure).

Since the old priors are inapplicable in this case we only
apply the new priors. The minimum and the maximum points
were determined from normalized reference NBM volumes
and provided indices p and p, based on which the remaining
parameters of the prior were setup: ε and ε were set to 0.02,
while qp and qp were set so that the respective minimum and
maximum values were approximately at qp+ε/2 and qp+ε/2.
K was set to 1, q0 was set to (qp + qp)/2.

The resulting estimates in Figure 6 show good agreement
with the reference. Generally, estimates of Fm are in good
agreement with those obtained using least squares on refer-
ence values, taking into account the associated uncertainty,
and therefore enable use case B1. The BRFEE RMSE for
NBM volume is slightly lower as compared to the RMSE
obtainable from a single predictor (A=0.038, A1=0.049 for left
hemisphere, A=0.027, A1 = 0.034 for right hemisphere). This
means that BRFEE performance in use case B2 is comparable
or better than the best surrogate measurement method, but does
not require knowing the coefficients of systematic response in
advance.

V. DISCUSSION

A major contribution of this work are the theoretical results
that clarify the relationship between BRFEE estimates and
the true values of measured quantities and explain how to
acquire experimental data such that the uncertainty of error
estimation is minimized. Moreover, the proposed prior speci-
fication scheme extends the class of problems to which the
framework can be applied. For instance, one can estimate
a certain dependent quantity that is either unobservable in
principle or inherently difficult to measure from a given a
set of observable quantities. A pertinent example presented
is estimation of the volume of small brain nucleus that is an
important biomarker of dementia onset based on volumes of
larger brain structures routinely segmented from MR images.

The experiments show that the new priors for BRFEE can be
used as a drop-in replacement for the old ones for the purpose
of MMs comparison. Besides, they enable a new kind of ap-
plication where several easy to measure quantities, potentially

(a) (b)

(c) (d)
Fig. 6. Experiment with clinical data where the volumes of segmented brain
structures serve as surrogate measurements for NBM volume. Estimates of
normalized NBM volume plotted against reference values for (a) left and (b)
right brain hemisphere. Green and red points denote the order-disambiguating
pair (p, p). Figure of merit of the measured volumes as predictors for (a) left
and (b) right NBM volume.

dependent on a difficult to measure or unobservable quantity,
are treated as surrogate measurements in order to estimate its
value in the sample and estimate the said dependencies.

For the purposes of comparing MMs the new priors can
be thought of as being more practical and objective — they
don’t require guesswork regarding coefficients of the poly-
nomials, only sufficient knowledge of the measurand range
and ordering, in the form of additional tolerance parameters
ε and ε and the order-disambiguating pair of indices (p, p),
respectively. In some situations additional parameters can be
measured or inferred with certainty. For example, in case of
TLL measurements, by including a healthy control subject in
the dataset ε is reduced to exactly zero. Furthermore, if the
patient with the highest TLL can be identified, then by a single
application of a gold standard MM, ε can be reduced to a small
multiple of this method’s (nominal) accuracy. As for the order-
disambiguation pair, we can think of three practical ways to
select p and p. The first way is to use controls: for a large
class of biomarkers it is known that a healthy control subject
has the true value of the biomarker exactly equal to zero and is
guaranteed to be less than the corresponding value for a patient
who has the relevant medical condition. The second way is
to apply a GS method to obtain two reference measurements
and thus infer the order of the estimates. The third way is
an educated guess: if m are genuine measurement methods
there might be a pair of patients, for which the measurements
are such as to virtually guarantee a certain ordering of the
underlying measurand values.

Since the new priors lift all assumptions on the coefficients
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of polynomials, which model the systematic error, the class of
problems that can be addressed by the reference-free approach
is significantly extended. The framework becomes applicable
to the problems of exploratory factor analysis and unobserved
quantity estimation. This is exemplified to some extent by our
experiments in section IV-C. The synthetic experiment showed
that despite highly non-linear gm it was possible to recover
qp with high accuracy as long as σm remained low relative
to the derivative of at least one of gm in all subregions of
[q
p
, qp]. For the experiment with clinical data, the estimates

were less accurate, but still useful as a synthetic biomarker
for diagnostic purposes with costs much lower than those of
reference measurements.

In both demonstrated scenarios the BRFEE provides signif-
icant savings of time and costs. For instance, examination of
Fm or Qm allows to determine the surrogate measurement
methods whose contribution to the estimates is negligible
and thus discontinue their assessment, thereby eliminating
future costs associated with them. Furthermore, savings and
costs associated with the creation of reference dataset may
be reduced or eliminated, including the costs of human time,
but also the costs of non-standard acquisition protocols, high-
end acquisition equipment, material costs (e.g. contrast agents,
phantom), instrumentation costs (frames, fiducial markers), ad-
ministrative overhead and possible side effects for the patients.

The theoretical analysis provided in the present work un-
covers the essence of the reference-free approach: the mea-
surement data alone does contain significant information to
recover the underlying measurand, but only up to a linear
transformation. Information about the scale and location of
the measurand distribution must be supplied separately in the
priors in order to enable effective inference.

With the proposed new priors we have shown one of the
ways in which scale and location information can be encoded.
Other ways can be imagined and might even be preferable
in certain applications. It is important to note that, regardless
of the exact encoding, the quality (accuracy and precision)
of scale and location information will directly influence the
quality of inference. This is exemplified in our synthetic
experiments, where dependence of estimation accuracy on the
number of measurand points N was studied. Constant and
relatively low precision of the specified scale and location as
encoded by ε and ε prevented an improvement of the accuracy
of systematic error estimation with increasing dataset size.

In order to apply the proposed framework to a given dataset
the a priori relationships between the observable quantities
(i.e. measurements) and the unobservable quantity (i.e. the
one being estimated) should adhere to Equation (2). For a
meaningful inference it is also desirable that we have a priori
grounds to believe that Equation (5) is a good approximation
of the actual error distribution. Whether these assumptions
hold for a given real-word problem cannot be known from the
data alone, but should be established from domain knowledge.

In this work we used a generic polynomial approximation of
MMs systematic error. When physical considerations suggest
a different functional form it should be used instead. The
proofs that we have provided are not applicable in such cases,
however, we conjecture that the general property that the mea-

surand is encoded in the likelihood up to some transformation
would still hold. It might even be that, if for different m the
gm belong to different parametric families, then the measurand
would be identified by the likelihood uniquely.

The results in this work showcase the power of Bayesian
method and demonstrate what can be achieved by means
of even a very primitive theoretical analysis. The area of
possible application of BRFEE is truly wide and encompasses
some important use cases. Apart from obvious use in medical
image analysis and biomarker research it has implications
for metrology in general. It shows how MMs can be treated
symmetrically without arbitrarily declaring any method to
represent the reference or “gold standard”.

A software implementation of the framework, software used
to generate the synthetic data and analyze the MCMC samples
along with the clinical datasets used in this work are available
on GitHub: http://github.com/madanh/practical priors.
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APPENDIX: THEOREM PROOFS

Theorem 1. Let

x′p = α1xp + α0, α0, α1 = const, α1 6= 0 ∀p (34)

then there exist b′km such that

K∑
k=0

bkmx
k
p =

K∑
k=0

b′kmx
′k
p ∀m (35)

and thus
f(Y | B,Σ,x) = f(Y | B′,Σ,x′) (36)

Proof. We drop the m subscript in this proof for brevity.
Substitution of (34) into (35) gives

K∑
k=0

bkx
k
p =

K∑
k=0

b′k(α1xp + α0)k (37)

Equating coefficients for the k-th power of xp

bK = b′Kα
K
1 (38)

and
b′K =

bK
αK1

(39)

For the (K − 1)-th power of xp:

bK−1 = b′K−1α
K−1
1 + b′K

(
K

K − 1

)
α0α

K−1
1 (40)

where
(•
•
)

is binomial coefficient. From (39)

b′K−1 =
bK−1

αK−11

− b′K
(

K

K − 1

)
α0 (41)

Proceeding similarly for lower powers we find that for all
k = K − l, l = 0..K

bK−l = b′K−lα
K−l
1 +

K∑
j=K−(l−1)

(
j

K − l

)
b′jα

j−k
0 αK−l1 (42)

bk = b′kα
k
1 +

K∑
j=k+1

(
j

k

)
b′jα

j−k
0 αk1 (43)

and

b′k =
bk
αk1
−

K∑
j=k+1

(
j

k

)
b′jα

j−k
0 (44)

thereby defining b′k for all k.

Theorem 2. Let h be analytic on (x, x) and

x′p = h(xp) ∀p (45)

Then (35) has a solution in b′km for general bkm only when

h(xp) = α1xp + α0, α0, α1 = const, α1 6= 0 (46)

Proof. First, since LHS of (35) is a polynomial in powers
of xp, RHS must be a polynomial in powers of xp as well,
consequently h(xp) is a polynomial. Let J be its degree:

x′p =
J∑
j=o

αjx
j
p, αJ 6= 0. (47)

Then we have to prove that (35) generally has no solutions
when J > 1. Substitution of (47) in (35) gives

K∑
k=0

bkmx
k
p =

K∑
k=0

b′km

 J∑
j=0

αjx
j
p

k

(48)

LHS is a polynomial of power K while RHS is a polynomial
of power JK, therefore all RHS coefficients except the lowest
K are equal to zero. Consequently, for the subset of terms that
include αJ in RHS:

b′kmα
k
J = 0, ∀k > K/J (49)

From (47) αJ 6= 0, so

b′km = 0, ∀k > K/J (50)

Now what remains is to consider b′km for k 6 K/J . For
k =

[
K
J

]
, where [•] is the integer part operator, the coefficient

of xk must satisfy
bkm = b′kmα

k
J (51)

The coefficient of xk−1 must satisfy

b(k−1)m = b′km

((
k − 1

1, k − 2

)
αk−2J α1

)
(52)

where
( •
•,•
)

is multinomial coefficient.
Eliminating b′km from the above two equations:

bkm
b(k−1)m

=
αkJ(

k−1
1,k−2

)
α1α

k−2
J

∀m (53)

These equations cannot be satisfied simultaneously for all m if
bkm

b(k−1)m
differ across m thus proving that generally we cannot

have J > 1. Consequently, h is (at most) linear.


