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Abstract Changes of white-matter lesions (WMLs) are good
predictors of the progression of neurodegenerative diseases
like multiple sclerosis (MS). Based on longitudinal magnetic
resonance (MR) imaging the changes can be monitored, while
the need for their accurate and reliable quantification led to the
development of several automated MR image analysis
methods. However, an objective comparison of the methods
is difficult, because publicly unavailable validation datasets
with ground truth and different sets of performance metrics
were used. In this study, we acquired longitudinalMR datasets
of 20 MS patients, in which brain regions were extracted,
spatially aligned and intensity normalized. Two expert raters
then delineated and jointly revised the WML changes on
subtracted baseline and follow-up MR images to obtain
ground truth WML segmentations. The main contribution of
this paper is an objective, quantitative and systematic evalua-
tion of two unsupervised and one supervised intensity based
change detection method on the publicly available datasets
with ground truth segmentations, using common pre- and
post-processing steps and common evaluation metrics.
Besides, different combinations of the two main steps of the
studied change detection methods, i.e. dissimilarity map con-
struction and its segmentation, were tested to identify the best
performing combination.
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Introduction

Serial or longitudinal imaging of the brain is performed rou-
tinely on patients with certain cerebrovascular and neurode-
generative diseases, for instance, in multiple sclerosis, small
vessel disease, Alzheimer's and other dementias. The evolu-
tion of these diseases has been strongly correlated to changes
of brain structures (Ramirez et al. 2014; Rocca et al. 2013;
Susanto et al. 2015), which often appear ahead of clinical
symptoms (Lebrun et al. 2008; Risacher et al. 2009).
Structural changes can manifest only locally, affecting specific
brain structures or locations, and resulting for instance in
white matter lesions (WMLs), or may have a gross effect on
the whole brain, resulting in atrophy. Here, we focus on mul-
tiple sclerosis (MS) and the detection of associated local
changes of WML, since they were established as good predic-
tors ofMS disease progression and long term patient disability
(Patti et al. 2015; Popescu et al. 2013). For detection of MS
WML changes (Rocca et al. 2013), magnetic resonance (MR)
tomographic imaging is by far the most sensitive imaging
technique. Clinically relevant time intervals for observing
WML changes range from several months to up to 2 years.
Because WML changes may be very subtle (small changes in
volume and/or MR intensities), their detection in longitudinal-
ly acquired MR images requires highly sensitive image anal-
ysis techniques (Vrenken et al. 2013; Wei et al. 2004; Lladó
et al. 2012).

Detection and quantification ofWML changes is nowadays
mostly performed by comparing corresponding manually de-
lineated WMLs in the baseline and follow-up MR images.
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When characterizing changes of WMLs, a single brain MR
imaging session may consist of several MR modalities, e.g.
T1-, T2-weighted (T1w, T2w), diffusion weighted, proton-
density weighted (PDw) and fluid-attenuated inversion recov-
ery (FLAIR), which may all need to be jointly observed to
reliably detect and delineate the WMLs (Vrenken et al. 2013).
However, manual delineation slice-by-slice across multiple
three-dimensional (3D) MR images is tedious, time consum-
ing, and most of all subjective. Because manual delineations
generally suffer from high inter- and intra-rater variabilities,
subtle WML changes cannot be reliably identified and accu-
rately quantified. To avoid the aforementioned shortcomings
of the manual method and to improve the accuracy, reliability
and reproducibility of change detection in longitudinal MR
images, several automated methods have been developed.

Automated WML Change Detection

The problem of automated WML change detection can be
addressed by three different strategies (Lladó et al. 2012): 1)
longitudinal volumetric analysis, 2) deformable image regis-
tration and 3) longitudinal analysis of MR intensity
(Patriarche and Erickson 2004). Automated longitudinal vol-
umetric analysis independently delineates (segments) the
WMLs in the baseline and follow-up MR images (García-
Lorenzo et al. 2013; Llado et al. 2012) and thus mimics the
manual method. The variability of results obtained by this
method is often too high to consistently accurately segment
small WMLs, let alone their changes. Deformable image reg-
istration aligns the baseline and follow-up MR images and
then extracts changes from deformation fields. This type of
methods have the potential to measure enlarging and shrink-
ingWMLs, while their potential in case of newly appearing or
disappearing WMLs is not that clear (Rey et al. 2002;
Studholme et al. 2006). Moreover, the deformations must be
physically constrained, which is generally difficult to model in
case of diffuse-appearing structures like WMLs. The longitu-
dinal intensity analysis employs a more simple rigid or affine
registration, followed by change detection based on the

analysis of intensity values at corresponding sites of the base-
line and follow-up MR images (Moraal et al. 2009). As MR
intensity changes are an important feature of longitudinal
changes of WMLs, the methods based on longitudinal inten-
sity analysis or, shortly, the intensity based methods seem to
be the most promising of the three strategies for detecting
enlarging, shrinking, newly appearing and disappearing
WMLs. In the following we thus focus on this class of
methods.

Intensity based methods generally consist of four main
steps (Fig. 1), i.e. 1) preprocessing ofMR images, 2) construc-
tion of a dissimilarity map (DM), 3) segmentation of DM to
obtain change mask and 4) postprocessing of the change mask
resulting in WML changes. Most authors of intensity based
methods use a rather similar preprocessing sequence, which
comprises established procedures for brain extraction, white-
matter (WM) masking, MR intensity normalization and spa-
tial image co-registration. These preprocessing tools were rig-
orously evaluated in several recent studies, e.g. (Diez et al.
2013; Roura et al . 2014; Shinohara et al. 2014).
Postprocessing aims to eliminate false positiveWML changes
by relying on expert knowledge of WML morphology, ap-
pearance and location, obtained by rule-based methods
(Battaglini et al. 2014) or size and intensity based filtering
(Ganiler et al. 2014). Postprocessing is quite similar across
different methods for WML change detection (Lladó et al.
2012).

The intensity-based change detection methods mainly dif-
fer in the way the DM is computed and segmented. The DM
computations are either unsupervised or supervised, whereas
the former use solely the baseline and follow-up MR images,
while the latter also require a set of training images with ac-
curately segmented WML changes. A class of unsupervised
methods computes the DM by simply subtracting the co-
registered baseline and follow-up MR images (Battaglini
et al. 2014; Duan et al. 2008; Ganiler et al. 2014; Moraal
et al. 2009, 2010a, b). Battaglini et al. (2014) segment the
DM by a low threshold so as to obtain an overestimated mask
of candidate lesions within a subject-specific WM mask. By

Fig. 1 The four main steps of WMLs change detection
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rule-based postprocessing they finally reduce the false posi-
tive hyperintense clusters of voxels based on their extent,
shape, and intensity. Ganiler et al. (2014) use a threshold of
mean plus five standard deviations of the DM values to seg-
ment the DM and keep only those segmented structures,
which are larger than three voxels. Direct point-by-point im-
age subtraction may result in a DM that is highly susceptible
to image noise, imperfect intensity normalization and registra-
tion errors and thus may not provide an objective change
detection criterion. To overcome some of these drawbacks, a
statistical change detection based on Generalized Likelihood
Ratio (GLR) (Bosc et al. 2003), a voxel-wise test statistic that
represents the DM, was proposed. The GLR considers the
intensity distributions within local patches of baseline and
follow-up images and may be easily extended to multi-
modal change detection (Bosc et al. 2003; Simoes and
Slump 2011). Simoes and Slump 2011 automatically
determined a threshold of the GLR by minimizing the offset
of the angular histogram of change vectors in the space
spanned by T1w and T2w modalities. Nika et al. (2014) used
patches of baseline and follow-up images for adaptive dictio-
nary learning. To assess the (dis)similarity between the im-
ages, each patch in the follow-up image was expressed as a
linear combination of patches from the dictionary. To extract
the best features for segmentation and for higher efficiency,
the obtained linear coefficients were projected to a lower-
dimensional subspace by principal component analysis and
the DM was formed as the L1 norm of subspace features.
The performance of patch-based methods on real MR images
is rather unclear because they were only evaluated qualitative-
ly and/or on synthetic MR images.

Supervised intensity-based approaches determine the best
features from the annotated training datasets. Sweeney et al.
(2013) used a Logistic Regression Model (LRM) based on
multi-modality images of baseline and follow-up MRs, the
difference images and the time between studies to estimate a
DM. Elliott et al. (2013) used the baseline and one or more
follow-upMR images to perform a joint temporally consistent
Bayesian segmentation of brain tissues. The obtained tissue
class probabilities, baseline, follow-up and difference images
were then applied in a random decision forest classifier to get a
change probability map, which represented the DM. The
changes were obtained by a user-defined threshold of the
DM. Because the supervised methods are trained on images
acquired by a specific MR machine, parameters and modali-
ties, their performance is likely to deteriorate substantially if
applied to images acquired under conditions different to those
in the training dataset.

Validation Issues

The authors of the aforementioned methods reported rather
good change detection results. However, an objective

comparison of their methods is difficult, because the authors
used different validation datasets, with differently obtained
ground truth, and even a different set of performance metrics
(Lladó et al. 2012). Furthermore, a fair cross-comparison is
also difficult due to pre- and post-processing differences,
which are not the core of the methods. In image segmentation,
the ground truth is generally obtained manually. For WML
change segmentation, synthetic MR images from the
BrainWeb (Cocosco et al. 1997) simulator can be used.
However, the problem is that BrainWeb provides only one
brain template that contains MS lesions. Although synthetic
datasets are often used to verify a change detection method,
they are not appropriate for an objective and reliable valida-
tion. Within a recent WML segmentation challenge, a dataset
of 20 MS patients, each with 3-5 MR studies and lesions
independently segmented by two raters on baseline and
follow-up MR images, was made available (Pham n.d.).
Since these WML segmentations were created on a per study
basis where the inter-rater variability is generally large, they
are not the best for validating WMLs change detection
methods. A better approach would be to consider a consensus
across segmentations of WML changes provided by several
experienced neuroradiologists (Styner et al. 2008). To the best
of our knowledge, validation datasets with such a ground truth
are not yet publicly available.

Contribution of the Paper

The aim of this paper is to objectively validate and compare
several intensity based methods for detecting WML changes
using longitudinal MR image datasets with accurate
consensus-based ground truth. We focused on the methods
proposed by Ganiler et al. (2014), Simoes and Slump (2011)
and Sweeney et al. (2013), since they seem to be able to
capture all types of WML changes (i.e. newly appearing and
disappearing, enlarging and shrinking WMLs) and since sev-
eral researchers (Ganiler et al. 2014; Rousseau et al. 2007; Seo
and Milanfar 2009; Simoes and Slump 2011) have already
reported a rather good performance of these methods. Three
methods, two unsupervised (Ganiler et al. 2014; Simoes and
Slump 2011) and one supervised (Sweeney et al. 2013), were
studied according to the main steps of a change detection
method, i.e. DM formation and segmentation. Performance
of each of these steps was individually validated to get a better
insight into the tested methods, while different combinations
of steps were validated with the aim to maximize the overall
performance of change detection. The methods were tested on
a longitudinal database of 20 MS patients, on which ground
truth was created by two expert raters who segmented WML
changes on preprocessed and subtracted baseline and follow-
up T1w, T2w and FLAIR MR images. The consensus seg-
mentations were jointly refined by the two raters until they
agreed onwhat was considered the ground truth segmentation.
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Among the testedmethods the subtraction-based DM comput-
ed on the FLAIR modality and automated confidence level
thresholding (Ganiler et al. 2014) provided most accurate
change detection in terms of median Dice similarity coeffi-
cient (0.48) and was considered reliable as it had the highest
and the most consistent detection success rate (>75 %) across
different volumes of lesion changes.

Methods and Material

The WML change detection process can be divided into
four steps (Fig. 1): 1) preprocessing, in which all images
are spatially aligned into a common coordinate frame and
MR intensities are corrected for non-uniformities and nor-
malized. Since WML changes are constrained to WM, the
whole brain and the WM mask are also extracted in this
step. 2) DM is computed as a function of co-located inten-
sities of the preprocessed baseline and follow-up images.
The fuzzy value of a DM voxel corresponds to the proba-
bility of change. 3) segmentation of DM, which results in a
change mask, indicating the detected changes. 4)
postprocessing of the change mask to reduce false posi-
tives due to imperfect steps 1–3. Table 1 lists the character-
istics of the three validated intensity based change detection
methods (Ganiler et al. 2014; Simoes and Slump 2011;
Sweeney et al. 2013 (SuBLIME, RRID:SCR_014409)) ac-
cording to the four steps described above. The methods main-
ly differ in the DM creation and segmentation (steps 2 and 3,
respectively).

Throughout this paper, the symbols ℬ and ℱ will refer to
sets of preprocessed baseline and follow-up MR images, re-
spectively, where ℬ={ℬℳ(x)} and ℱ={ℱℳ(x)} and ℳ
is a set of MR modalities, e.g.ℳ={T1w, T2w,FLAIR,…}.

Preprocessing

The preprocessing steps of the three validated methods
presented in Table 1 are quite similar but not equal.
Based on the preprocessing used by the three methods,
we have developed a preprocessing pipeline (Fig. 2),
which was applied to all three methods. In this way,
preprocessing did not bias a method. The input to the
preprocessing step are the raw baseline and follow-up
T1w, T2w, and FLAIR images, while the output are in-
tensity inhomogeneity corrected and intensity normalized
T1w, T2w, and FLAIR images, and brain and WM
masks that are all registered and transformed into a com-
mon reference frame.

In the preprocessing pipeline, brain masks are first
extracted from the baseline ℬ and follow-up ℱ T1w
MR images using BET 2 (Smith 2002). After brain ex-
traction, the N4 bias correction (Tustison et al. 2010) and

Gaussian mixture model based Atropos segmentation
(Avants et al. 2011) are iteratively executed on the
masked T1w images until there are no changes to the
bias field and the segmentation. The result are bias
corrected masked T1w ℬ and ℱ images and segmenta-
tions of these images into normal appearing brain struc-
tures (NABS), comprising WM, gray matter (GM) and
cerebrospinal fluid (CSF). Next, the intra-study T1w,
T2w and FLAIR images are registered. It is expected that
the intra-study registration will perform better if, besides
the T1w, the T2w and FLAIR images are also masked
and bias corrected. Therefore, the registration is per-
formed in two-stages. First, the bias corrected masked
T1w ℬ and ℱ images are registered to their correspond-
ing raw T2w and FLAIR images using the affine trans-
formation and mutual information maximization (Avants
et al. 2014; Maes et al. 1997). The obtained transforma-
tions are used to align the T1w brain mask to T2w and
FLAIR images, which are then bias corrected by the N4.
Second, after all images are bias corrected they are again
affinely registered by using FLAIR as a reference image
and the affine transformations from the first step to ini-
tialize the registration. Next, inter-study registration is
performed between the ℬ and ℱ masked FLAIR images
using the affine transformation and normalized correla-
tion maximization (Avants et al. 2014). After registration,
all images are resampled into a new reference frame de-
fined Bhalf-way^ between ℬ and ℱ FLAIR images so as
to harmonize the impact of interpolation artifacts across
ℬ and ℱ images. Namely, given the affine transforma-
tion T from ℬ to ℱ FLAIR image, the reference frame is
defined by transformations T1/2 and T− 1/2 with respect to
the ℬ and ℱ FLAIR images, respectively, such that
T = T1/2 ⋅ T− 1/2

− 1 . The obtained intra-study ℬ and ℱ and
respective T1/2 and T− 1/2 transformations are composed
so as to align all the images in ℬ and ℱ into a common
reference frame. Image registration and resampling of
transformed images, N4 bias field correction and
Atropos segmentation were all performed using the
ANTs toolbox (Avants et al. n.d.).

Since only changes within the WM are of our interest,
the ℬ and ℱ WM masks Ωℬ and Ωℱ are transformed
into the common reference space. Their union defines the
domain Ω where WML changes are searched for.
Because the CSF and GM are excluded from further
analysis, false change detections due to imperfect regis-
tration at structures’ borders, partial volume artifacts and
signal overshoots are reduced.

Let xi∈Ω, i=1,…,N represent lexicographically ordered
spatial coordinates, where N is the number of voxels withinΩ.
The mean μ and standard deviation σ of WM intensities with-
inΩ are used to normalize eachMRmodalityℳ inℬ andℱ
as in (Sweeney et al. 2013). E.g., for modalities in ℬ:
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ℬ
0
ℳ xð Þ ¼ ℬℳ xð Þ−μ ℬℳ xið Þ; xi∈Ωð Þ

σ ℬℳ xið Þ; xi∈Ωð Þ ; ð1Þ

where ℬ ′ ℳ(x) is the intensity-normalized image.
Analogously, the normalization is carried out on modalities
in ℱ. Note that the normalization applies to all voxels x in
the image. For notational brevity we assign ℬℳ(x)← ℬ ′

ℳ(x) and ℱℳ(x)←ℱ ′ℳ(x) and use only the intensity nor-
malized images in the following steps.

Construction of Dissimilarity Map

The preprocessed ℬ and ℱ MR image sets are used to
create the DMs by the STI (Ganiler et al. 2014), GLR
(Simoes and Slump 2011) and LRM (Sweeney et al.
2013) methods, which are based on subtraction of inten-
sity images, generalized likelihood ratio and logistic re-
gression model, respectively. In the following, we briefly
describe these methods.

Subtraction of Intensity Images (STI)

A simple way to construct a DM is to subtract co-located
intensities in the baseline ℬℳ and follow-up ℱℳ MR im-
ages of the same modality ℳ (Ganiler et al. 2014):

DMSTI xið Þ ¼ ℱ ℳ xið Þ−ℬℳ xið Þ; i∈Ω; ð2Þ

where ‖ ⋅ ‖ is the L2 norm of voxel-wise intensity dif-
ferences. A higher value of DMSTI(x) corresponds to a

higher likelihood of change at voxel x. Computation of
DMSTI(x) may employ multiple modalities or MR se-
quences, e.g. T1-, T2-weighted and/or FLAIR, such that
ℱℳ(x) and ℬℳ(x) represent vectors of corresponding
intensity values. Because the best result of WML
change detection are obtained by subtracting only the
FLAIR images, we used only FLAIR to compute
DMSTI.

Generalized Likelihood Ratio (GLR)

The GLR (Simoes and Slump 2011) was computed from the
baseline and follow-up T1w and FLAIR MR images. The
GLR assumes that the intensities are normally distributed,
which, in general, holds for intensities within the WM mask.
To compute the GLR at each voxel location xi∈Ω within the
WM mask Ω, a window of sidelength W is centered at xi in
the ℬ and ℱ images and the dissimilarity value is then
computed as:

DMGLR xið Þ ¼ −
1

2

X
j∈W xið Þ

Bℳ x j

� �
−μ̂B

� �T
C−1

v Bℳ x j

� �
−μ̂B

� ��

þ Fℳ x j

� �
−μ̂F

� �T
C−1

v Fℳ x j

� �
−μ̂F

� �

− Bℳ x j

� �
−μ̂0

� �T
C−1

v Bℳ x j

� �
−μ̂0

� �

− Fℳ x j

� �
−μ̂0

� �T
C−1

v Fℳ x j

� �
−μ̂0

� ��
;

ð3Þ

where Cν is the noise covariance matrix, while μ ̂
B and

μ ̂
F represent the mean intensities of WM in the ℬ

Table 1 Overview of the three validated methods according to four steps of change detection

Method Preprocessing Construction of
dissimilarity map

Segmentation of
dissimilarity map

Postprocessing

Ganiler et al. (2014) • Brain extraction
• Bias field correction
• Atlas and model-based WM

segmentation
• Histogram based intensity

normalization
• Rigid image registration

Subtraction of intensity
images (STI)

Confidence level thresholding
(CLT)

Size and intensity
based filtering

Simoes and Slump (2011) • Affine image registration
• Brain extraction
• Bias field correction
• Histogram based intensity

normalization

Generalized likelihood
ratio (GLR)

Change vector angular
histogram thresholding
(CVAHT)

/

Sweeney et al. (2013) • Isotropic image resampling
• Rigid image registration
• Brain extraction
• Normal-appearing model-based

WM segmentation
• Intensity normalization based on

normal-appearing WM

Logistic regression
model (LRM)

Manual threshold /
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and ℱ images, respectively, and μ ̂
0 ¼ μ̂B þ μ ̂

F

� �
=2

(Simoes and Slump 2011). Equation (3) yields a DM,
in which higher values correspond to a higher likeli-
hood of change.

Fig. 2 Preprocessing of baseline and follow-upMR images. First, a brain
mask is extracted using BET 2 (FSL, RRID:SCR_002823), followed by
N4 bias field correction andAtropos-based NABS segmentation (ANTS -
Advanced Normalization ToolS, RRID:SCR_004757). Next, intra- and
inter-study registration is performed on the bias field corrected images

and, then, the images and NABS segmentations are transformed into a
common reference frame. The registered NABS segmentations are used
to 1) define the mask for change detection (Ω) as a WM union of the
baseline and follow-up WM masks and 2) to perform WM intensity
normalization on the registered images
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Logistic Regression Model (LRM)

The DM is obtained by feeding a trained LRM (Sweeney
et al. 2013) with multiple MR image modalities, pairwise
intra- modality difference images and time difference be-
tween studies (Δt) to estimate voxel-level probabilities
of lesion change:

DMLRM ¼ β0 þ β1Δt þ β2ℬ FLAIR

þ β3 ℱ FLAIR−ℬ FLAIRð Þ þ β4 ℱ FLAIR−ℬ FLAIRð Þ Δt

þ β5ℬ T1 þ β7 ℱ T1−ℬ T1ð ÞΔt þ β8ℬ T2

þ β9 ℱ T2−ℬ T2ð Þ þ β10 ℱ T2−ℬ T2ð ÞΔt; ð4Þ

where β0…β10 are trained coefficients corresponding to
the T1w, T2w, and FLAIR MR modalities. Again, higher
values of DMLRM correspond to a higher likelihood of
change.

Dissimilarity Map Segmentation

Each of the three tested methods originally employed a differ-
ent DM segmentation approach (Table 1), which resulted in a
tentative change mask. The LRM based DM, which is a prob-
ability map with a range from 0 to 1, was manually
thresholded in (Sweeney et al. 2013). A threshold could also
be automatically computed from the DM. The DM segmenta-
tion method in (Ganiler et al. 2014) computes a threshold
based on nonparametric statistical testing of an empirical
probability density function (PDF), which is computed from
the DM. A predefined confidence level α determines the sig-
nificant changes (outliers) of the empirical PDF. Based on the
nature of DM, the outliers are selected either from two or one
tail of the empirical PDF. The disadvantage of this so-called
confidence level thresholding (CLT) method is that the value

of α is related to the number of voxels representing significant
changes. Therefore, it is difficult to select a value ofα that will
optimally segment the DM of patients with different volumes
of changes, as these are generally not known in advance.
Therefore, for optimal change detection, the value of α needs
to be adjusted on a case by case basis.

The segmentation method in (Simoes and Slump 2011)
computes the threshold by analyzing the angular histogram
of a change vector (CV), defined as CVℳ=ℱℳ−ℬℳ.
The angular histogram of change vectors is computed from
angles:

∠CV ¼ arctan
CVFLAIR

CVT1w

� 	
: ð5Þ

At a low threshold, the angular histogram will generally
appear noisy and will contain a certain offset (Fig. 3). By
increasing the DM threshold, less significant changes are ex-
cluded, and the histogram’s offset decreases towards 0. The
threshold of DMmay be selected by increasing a tentative DM
threshold from a low to a high value until the histogram’s
offset drops below a certain predefined small value ε. This
segmentation will be referred to as Change Vector Angular
Histogram Thresholding (CVAHT).

Since both the CLT and CVAHT segmentations are based
on thresholding, a third segmentation based on the optimal
DM threshold, found by maximizing Dice similarity coeffi-
cient (DSC) between the computed and the reference change
masks on each dataset using exhaustive search, was included
for comparative performance evaluation.

Postprocessing

The changemask often containsmany false positives resulting
from various artifacts such as partial volume, imperfect inten-
sity normalization and/or registration or spurious high

Fig. 3 DM thresholding by the CVAHT method: by increasing the DM threshold the angular histogram’s offset progressively decreases towards zero.
For numerical reasons, the DM threshold is chosen when the histogram’s offset falls below some small value ε
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intensity values due to image noise. These false positives are
mostly isolated voxels or small clusters of voxels and can thus
be efficiently removed by size based filtering of the change
mask (Ganiler et al. 2014). The size based filtering is per-
formed by connected component analysis that isolates regions
of connected voxels. If the volume of a region is less than
some threshold ϑ, the region is removed from the change
mask.

Validation Database and Ground Truth

The validation database contained baseline and follow-upMR
images of 20 MS patients. Patient demographic and treatment
data is summarized in Table 2. The images were acquired on a
1.5 T Philips MRI machine at the University Medical Centre
Ljubljana (UMCL). All 20 subjects have given written in-
formed consent at the time of enrollment for imaging. The
authors, who have obtained approval from the UMCL to use
the data, confirm that the data was anonymized. Each patient’s
MR dataset contained a 2D T1-weighted (spin echo sequence,
repetition time (TR)=600 ms, echo time (TE)=15 ms, flip
angle (FA)=90°, sampling of 0.9×0.9×3 mm with no inter-
slice gap resulting in a 256 × 256 × 45 lattice), a 2D T2-
weighted (spin echo sequence, TR=4500 ms, TE=100 ms,
FA=90°, sampling of 0.45×0.45×3 mm with no inter-slice
gap resulting in a 512× 512× 45 lattice) and a 2D FLAIR
image (TR=11,000, TE=140, TI=2800, FA=90, sampling
of 0.9 × 0.9 × 3 mm with no inter-slice gap resulting in a
256×256×49 lattice). The median time between the baseline
and follow-up studies was 311 days, ranging from 81 to
723 days with the interquartile range (IQR) of 223 days
(Fig. 4). Some examples of database images are shown in Fig. 5.

For evaluation purposes, the reference or ground truth of
changes was created by two expert raters. Initially, each rater
independently segmented lesion changes in all 20 patient im-
age datasets. Segmentation was performed on preprocessed
and subtracted baseline and follow-up FLAIR images. To fa-
cilitate segmentation the raters could observe in side-by-side
view the subtracted FLAIR image as well as baseline and
follow-up FLAIR, T2w and T1w images and use manual
and local semi-automated segmentation tools to segment the
lesion changes. The raters focused on hypo- and hyper-intense

regions of the subtracted FLAIR image, taking into consider-
ation both the change in intensities and shapes ofWMLswhen
deciding if hypo- or hyper-intense changes are due to MRI
artifacts and image misregistration. The raters then jointly
revised and merged their individual delineations to obtain a
consensus, which was used as the ground truth segmentation
of the changes. According to the ground truth, the median
volume of lesion changes (LCs) per patient was 6.2 cm^3
(IQR: 6.5 cm^3). The distribution of LC volumes across all
datasets is shown in Fig. 4. Individual LCs were stratified
according to their volume into five categories listed in
Table 3, similarly as in (Elliott et al. 2013; Ganiler et al. 2014).

Experiments and Results

Validation of change detection focused on evaluating the two
main steps of change detection, namely DM creation and seg-
mentation. Therefore, combinations of three methods for DM
creation (STI, GLR and LRM) and three for DM segmentation
(CLT, CVAHT and optimal threshold) were tested on 20 MR
image datasets with a common preprocessing and
postprocessing as shown in Fig. 6.

Dissimilarity Map Construction and Evaluation

Using the preprocessed baseline and follow-up T1w, T2w, and
FLAIR images, DMSTI, DMGLR, and DMLRM dissimilarity
maps were constructed according to Eqs. (2), (3) and (4),
respectively. The DMSTI was computed from the ℬ and ℱ
FLAIR images, since FLAIR exhibits the best contrast be-
tween WM and the WMLs. The DMGLR was computed from
the T1w and FLAIR images while DMLRM employed the
T1w, T2w and FLAIR images. To compute the DMLRM, the
coefficients βi provided by the original authors in [28] were
used. Figure 7 shows the DMSTI, DMGLR and DMLRM com-
puted on five ℬ and ℱ MR images from the validation
dataset.

In order to determine the capability of the three different
DMs to express WML changes, a Receiver Operating
Characteristic (ROC) curve was first computed based onmod-
ifying α of CLT from 0 to 1, which is equivalent to changing
the DM threshold from a high to a low value (Fig. 8, left). In
the range of 0-0.1 of false positive rate (FPR), the ROC curves
indicate substantially lower sensitivity to changes (i.e. lower
true positive rate or TPR) of the LRM compared to STI and
GLR DMs.

The change detection capability of each DMwas then mea-
sured by calculating the area under the curve (AUC). Figure 8
(right) shows the obtained AUCs for the three tested DMs.
The STI and GLR performed best with median AUCs of 0.94
(IQR: 0.03) and 0.93 (IQR: 0.03), respectively, while the

Table 2 Patient demographic and treatment data

Gender Age MS diagnosis Therapy

14 female
6 male

19 to 50 years
Median: 34 years

1 secondary progressive
14 relapse remitting
5 unspecified

2 no therapy
6 Gilenya
2 Copaxon
2 Tysabri
1 Tecfidera
1 Aubagio
6 unspecified
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Fig. 4 Distribution of lesion change volumes across the 20 MR image datasets (left) and scatter plot of time difference between baseline and follow-up
study for each of the patients (right)

Fig. 5 Axial slices of FLAIR
MRI images from three different
MS patients: baseline image (1st
column), follow-up (2nd column)
and their difference (3rd column)
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LRM resulted in a lower median AUC (0.78) and had sub-
stantially higher variance (IQR: 0.18).

Dissimilarity Map Segmentation

The CLT and CVAHT segmentations of all DMs were tested
and the detected WML changes were evaluated by comparing
their segmentations to the reference changes using the DSC.
To evaluate the results obtained by the CLT segmentation, we
performed a leave-one-out training/validation to determine the
optimal confidence level αwith respect to DSC. For CVAHT,
the optimal offset threshold level (ε) for the given validation
datasets was determined similarly as for CLT, using leave-
one-out training. Figure 9 shows box-whisker plots of DSCs
obtained by the CLT, CVAHT, and optimal thresholding on
the STI, GLR, and LRM dissimilarity maps across all 20
datasets, while Table 4 reports the median DSCs and corre-
sponding IQRs. Based to the optimal DM threshold, the GLR
achieved the highest median DSC of 0.57 (IQR: 0.17), follow-
ed by STI with median DSC of 0.54 (IQR: 0.13) and LRM
with median DSC of 0.43 (IQR: 0.33). Among the tested
DMs, the GLR had the highest and most consistent DSC re-
gardless of the DM segmentation approach. However, com-
pared to the optimal threshold, the CLT and CVAHT segmen-
tations performed significantly worse (Wilcoxon signed rank
test, p<0.05) on all three DMs.

In order to quantify the overlap of the number of detected
and reference changes with respect to the LC volume, a
Regional DSC (RDSC) was computed. To find corresponding
volume related changes, a connected components analysis
was performed on both the reference change mask and on
the computed change mask. Two connected components,
one in the computed change mask and the other in the refer-
ence changemask, had to overlap in at least one voxel in order
to be considered corresponding. The number of true positives
(TP) was then determined as the number of overlapping
voxels between the corresponding connected components.
Voxels belonging to the connected component in reference
change mask that did not overlap with the component in the
computed change mask were considered false negatives (FN)
and, vice versa, voxels in the connected component in the
computed change mask that did not overlap with the

connected component in the reference change mask were con-
sidered false positives (FP). The obtained numbers of TPs,
FNs and FPs are illustrated in Fig. 6 and were used to compute
the RDSC, similarly to DSC. Besides the RDSC, the detection
success rate was computed, such that a particular lesion was
considered to be successfully detected if the obtained LC o-
verlapped with the ground truth LC in at least 5 % of voxels or
at least 1 voxel for the group of very small changes.

Combined box-whisker plots and graphs of RDSC and
detection success rate, respectively, are shown in Fig. 10 with
respect to the LC volume. To determine the optimal combina-
tion of DM creation (STI, GLR or LRM) and segmentation
(CLT, CVAHT or Optimal threshold) for each of the five LC
groups, all combinations were evaluated. The results indicated
that the success rate of LC detection, in general, increased
with the volume of LCs, which was especially apparent for
the GLR, whose success rate was significantly higher
(Wilcoxon signed rank test, p<0.05) for medium and very
large LCs as compared to small and very small LCs. The
median RDSC of successfully detected lesions ranged from
0.29 to 0.71, where larger LCs generally had higher values
than small LCs. To indicate significant differences between
the DMs and between CLT or CVAHT and the Optimal DM
thresholding, the Wilcoxon rank sum test was performed at a
significance level of 0.05. The significances are indicated in
Fig. 10.

Effect of Postprocessing

The goal of size based filtering is to decrease the FPs. The
parameter ϑ of the size based filter was set to 7.29mm3, which
corresponded to 3 voxels [21]. To demonstrate the effect on
the median DSC andmedian FPR, Table 4 reports correspond-
ing values before and after the postprocessing. The DSC of
change segmentations was consistently increased by the
postprocessing, overall by 3.9 % (IQR: 13.9 %). The overall
number of FPs decreased by 26.8 % (IQR: 44.3 %) with the
application of postprocessing. In STI and LRM DMs com-
bined with any of the three segmentations reduced the FPR
by at least 17 % and at most 67 %, while the reduction of FPR
was negligible (<5 %) on GLR as GLR seems to effectively

Table 3 Categorization of lesion
changes (LCs) according to their
volume

Category LC voxel count LC volume (mm3) Number of LCs Number of patients

Very small up to 10 up to 24 161 20

Small 11–20 24–48 201 20

Medium 21–50 48–120 205 20

Large 51–100 120–240 110 18

Very large 101 and larger 240 and larger 126 18
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Fig. 6 Change detection validation pipeline. Baseline and follow-up
input images are preprocessed (Fig. 2) and used to create the ground
truth segmentation. They are also used to construct three different DMs:
STI, GLR and LRM. Each DM is segmented with three different methods
(CLT, CVAHT and optimal thresholding) resulting in 9 different

segmentations of lesion changes. Postprocessing involving size-based
filtering is performed the segmentations to reduce false positives, then,
the obtained segmentations were validated against the ground truth by
computing metrics like ROC analysis, voxel-wise Dice similarity
coefficient (DSC), regional DSC and detection success rate
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suppress small volume changes through local window-based
smoothing (cf. Eq. (3)).

Discussion

In this paper, we objectively evaluated three intensity based
methods and their variants for the detection of lesion changes
on longitudinal MR image datasets of 20 MS patients. On

each dataset, accurate manual reference delineations of chang-
es between the baseline and follow-up MR images were cre-
ated by the consensus of two expert raters. The goal of the
present research was to provide an objective evaluation of the
main steps (computation of DM, segmentation of DM and
postprocessing) common to intensity-based change detection
methods. Namely, the tested methods mainly differ in the way
the DM is computed and segmented. To the best of our knowl-
edge these methods have so far been tested either on public

Fig. 7 Axial cross-sections of corresponding baseline (1st column) and follow-up (2nd column) FLAIR images of seven patients and the consensus
ground truth segmentation of changes (3rd column). The right three columns show the corresponding dissimilarity maps DMSTI, DMGLR and DMLRM
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datasets, comprising a rather limited number of synthetic MR
images (e.g. BrainWeb) (Cocosco et al. 1997) or on a specific
MR image dataset available only to the authors. Based on the
reported results in the literature it is, therefore, impossible to
objectively and reliably compare the performance of these
methods. Hence, one of our main contributions is an objective,
quantitative and systematic evaluation of the methods per-
formed on 20 image datasets, using common pre- and post-
processing steps and common evaluation metrics.
Furthermore, various combinations of steps for DM computa-
tion and segmentation were tested to identify the best
performing combination.

In order to systematically evaluate and compare the perfor-
mance of the methods, the MR images were first preprocessed
by a common preprocessing pipeline, which consisted of brain
extraction, intensity inhomogeneity correction, spatial image
co-registration, intensity normalization and white-matter
masking (Fig. 2). A similar preprocessing pipeline was recent-
ly used by Ganiler et al. (2014) but the preprocessing pipeline
used herein differs from Ganiler’s in two important aspects.
First, Ganiler et al. (2014) employed a histogram matching
based intensity normalization (Shah et al. 2011), which re-
quires learning and might, in cases with large discrepancy of
pathology, incorrectly match the intensity levels (Shinohara
et al. 2014). Instead, we normalized the intensities of each
MRmodality using the estimatedmean and standard deviation
of the WM intensity distribution as in (Shinohara et al. 2014;

Sweeney et al. 2013). Second, to avoid atlas based WM seg-
mentation, which requires nonlinear registration and is thus
generally less robust, we used the Atropos method (Avants
et al. 2011) for WM segmentation. The performance of the
preprocessing pipeline was assessed only qualitatively. The
main observations were that the preprocessing pipeline per-
forms very reliably if the baseline and follow-up images are
acquired on the sameMRmachine and if the same acquisition
protocols are used.

When images are acquired on different scanners, which is a
common situation in clinical practice, the proposed prepro-
cessing pipeline would likely need to be improved. We man-
aged to obtain a longitudinal dataset of three cases with base-
line and follow-up MR study acquired on two scanners of
different vendors. Assessment of the performance of our pre-
processing pipeline on these three cases showed that, because
of a high discrepancy between the intensity levels of the same
tissue on the baseline and follow-up MR images, the intensity
normalization step may need to be improved. Histogram
matching based normalization method for multi-scanner data
developed by Shah et al. (2011) proved insufficient as it may
badly scale the lesion intensity (Shinohara et al. 2014). In
general, there are rare cases of a large initial misregistration
between the baseline and follow-up MR images where the
preprocessing may fail, however, this can be easily detected
and corrected by a coarse manual registration prior to run-
ning the preprocessing. The degree of influence of the

Fig. 9 Performance of threeDMs
and three segmentations in terms
of DSC. The CLT and CVAHT
segmentations performed
significantly worse (Wilcoxon
signed rank test, p < 0.05)
compared to optimal thresholding
on all three DMs

Fig. 8 ROC curves (left) and
AUC (right) for the three DMs
based on CLT segmentation
across 20 MR datasets
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preprocessing pipeline on the measurement error of lesion
change volume should be well understood before any
image-based method that measures lesion changes can be ap-
plied for monitoring disease progress in the clinic. In the pro-
posed preprocessing pipeline, we have employed the best
methods for brain extraction, bias field correction, intensity
normalization and image registration, which are all publicly
available and which were extensively validated in the context
of brain image analysis (Klein et al. 2009, Diez et al. 2013,
Roura et al. 2014; Shinohara et al. 2014). Therefore, rather
than focusing on the impact of the methods employed for
preprocessing, this paper focused mainly on previously inad-
equately validated methods to detect and segment lesion
changes between two images, a rigorous approach to assess
their performance and on creation of a clinical dataset with
reference change delineations.

After the preprocessing, a dissimilarity map is comput-
ed and segmented to obtain a change mask. The DM’s
capacity to capture changes and the segmentation results
were evaluated individually using ROC analysis and
quantitative metrics such as the AUC, DSC and RDSC.
Besides, different combinations of the DM computation
and segmentation methods were evaluated using the same
quantitative metrics. Comparative evaluation of three DM
variants (Fig. 8) showed a high median AUC (>0.93) for

the unsupervised STI and GLR based DMs, but a lower
median AUC (0.78) for supervised LRM based DM. The
STI is easy to extend from one to two or more MR mo-
dalities, however, the best results were obtained by using
FLAIR only. The reason is that while near the ventricles
the detection of lesion changes from T2w is adversely
affected by high-intensity CSF signals, the T1w indicates
only a subtype of WMLs corresponding to chronic tissue
injury or severe inflammatory edema (Ge 2006). These
phenomena introduce undesired variations into the values
of DM, which renders it more difficult for segmentation.
The GLR based DM computation involves estimation of
the WM noise covariance matrix from MR intensities
within the WM mask. Possible errors in WM segmenta-
tion could therefore directly impact the performance of
the GLR method. Although the lowest AUC score was
obtained for the LRM method, the resulting DM seems
very resilient to image noise and FP intensity differences
near edges of the WM mask (Fig. 7). The LRM based DM
was executed by using the regression coefficients provid-
ed by the authors (Sweeney et al. 2013). For this reason
care was taken to normalize the MR image intensities as
described in (Sweeney et al. 2013). By retraining the re-
gression coefficients on the current MR image dataset, the
results would most likely improve, however, this would

Table 4 Effect of postprocessing
on the various instances of white
matter lesion segmentation

Metric Postprocessing Segmentation↓/
Dissimilarity→

STI GLR LRM

Median
DSC
(IQR)

Before CLT 0.48 (0.16) 0.48 (0.16) 0.37
(0.25)

CVAHT 0.15 (0.17) 0.49 (0.22) 0.35
(0.31)

Optimal threshold 0.54 (0.13) 0.57 (0.17) 0.43
(0.33)

After CLT 0.52 (0.24) 0.51 (0.20) 0.38
(0.31)

CVAHT 0.19 (0.20) 0.49 (0.22) 0.36
(0.34)

Optimal threshold 0.58 (0.13) 0.57 (0.17) 0.45
(0.34)

Median

FPR×10-2

(IQR×10-2)

Before CLT 0.31 (0.34) 0.24 (0.26) 0.25
(0.21)

CVAHT 10.26
(11.71)

0.09 (0.08) 0.23
(0.24)

Optimal threshold 0.24 (0.40) 0.25 (0.32) 0.25
(0.44)

After CLT 0.09 (0.09) 0.23 (0.24) 0.15
(0.12)

CVAHT 8.59 (11.91) 0.09 (0.08) 0.15
(0.14)

Optimal threshold 0.08 (0.19) 0.24
(0.303)

0.12
(0.32)

Results are shown as the median DSC (IQR) and the median FPR (IQR) before and after postprocessing
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certainly bias the evaluation in favor of the LRM based
DM. Hence, we feel it is of greater interest to use the
provided regression coefficients trained on one dataset
and evaluate the method performances on another MR
image dataset.

Two automated methods for DM segmentation were eval-
uated, namely confidence level thresholding (CLT) and
change vector angular histogram thresholding (CVAHT).
For comparison purposes, the optimal threshold was deter-
mined individually for each dataset by maximizing the DSC.
Both CLT and CVAHT performed worse than optimal
thresholding in terms of DSC (Table 4), which was also ver-
ified by the Wilcoxon rank sum test that indicated statistically
significant (p<0.05) difference compared to the DSC of seg-
mentation based on the optimal threshold. This result suggests
that, since CLT and CVAHT segmentations are relatively sim-
ple approaches, the use of more advanced or the development
of novel methods for DM segmentation could substantially
improve the accuracy of change detection.

The potential of change detection methods was also ana-
lyzed with respect to the volume of LC (Fig. 10). Among the

tested methods the combination of STI based DM and any of
the three segmentations resulted in the highest and most stable
detection success rates with respect to the different volumes of
LCs. On the other hand, the use of GLR based DM rendered
the change detection highly sensitive to the volume of LCs,
since less than 50 % of LCs of very small, small and medium
volumeswere successfully detected. Besides, the RDSC of the
GLR varied most with respect to different LC volumes. This
result also suggests that the high DSC obtained for the GLR
(Table 4) is mainly due good performance on large LCs.

For very small LCs the RDSC of STI in combination with
the CLT segmentation was significantly higher compared to
the GLR and LRM.However, compared to the optimal thresh-
old, the CLT segmentation applied to any of the DMs resulted
in significantly lower RDSC for very large LCs as well as for
large LCs when using STI. The reason is that the value of
confidence level α corresponds to the expected volume of
LCs, thus a fixed value of α inevitably leads to suboptimal
change segmentation performance on real datasets, in which
the volume of LCs is generally quite varying. Overall, the
combination of STI dissimilarity map construction and CLT

Fig. 10 Performance of change detection in terms of RDSC and
detection success rate for all combinations of three DMs and three DM
segmentations. A star ( ) indicates significantly lower RDSC (Wilcoxon
signed rank test, p< 0.05) in comparison to optimal thresholding on the

same DM. A diamond ( ), triangle ( ) or circle ( ) indicate significant
difference (Wilcoxon signed rank test, p< 0.05) between STI, GLR or
LRM, respectively, for the same DM segmentation method
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segmentation provides fairly accurate change detection in
terms of DSC (0.48) and RDSC (>0.45) and seems quite reli-
able as it has the highest and the most consistent detection
success rate (>75 %) across different volumes of LCs.
However, it is yet to be determined if such a performance is
sufficient for LC measuments for clinical use.

From a clinical point of view, the expected total volume of
hyperintense T2 lesion change observed RRMS patients in a
span of 1 year is 0.25±0.5 ml (Giorgio et al. 2014). Based on
our MR studies with a 1×1×3 mm 2D FLAIR acquisition,
which adheres to current clinical guidelines for MR imaging
ofMS patients (Rovira et al. 2015), this amounts to total lesion
change volume of 83±167 voxels. Clearly, using a 1 mm
isotropic 3D FLAIR acquisition would remedy this problem
to some extent, however, due to extended scanning time and
possible motion artifacts this is not always feasible in clinical
practice. Hence, robust detection of the very small lesions (up
to 10 voxels) could prove important in achieving a reliable
measurement for clinical use.

Change detection accuracy can be further improved by
applying a postprocessing step which reduces the false posi-
tives. Size based filtering discards any regions in the change
mask that are smaller than 3 voxels. In the present study,
postprocessing increased the median DSC by 3.9 % (IQR:
13.9 %) and reduced the median FPR by 26.8 % (IQR:
44.3 %). We have tested two additional postprocessing
methods described in (Ganiler et al. 2014), however, they
did not improve the final results on our datasets. The first of
the two methods aims to remove false positives near the WM-
GM tissue interface, which are mainly caused by misregistra-
tion. It seems that due to good registration and precise WM
masking in the preprocessing step, this had no impact on the
final results. The second postprocessing method compares the
intensity in the region of LC against the intensities of neigh-
boring voxels, excluding the region if the intensity difference
is below some threshold. However, applying this
postprocessing did not improve the results. Besides, this meth-
od seems to perform well only in cases of newly appearing
lesions, while it may discard true positives around an existing
lesion that only changed in shape, volume or intensity.

Alternative strategy to remove false positives at character-
istic locations like the WM-GM tissue interface or the medial
longitudinal fissure could be by masking based on co-
registered atlas. This approach would, however, require a good
nonlinear registration of the atlas. To differentiate changes of
existing lesions from false positives one strategy is to perform
temporal lesion change shape modeling (Goldberg‐Zimring
et al. 2003) and then exclude only those detected changes that
are not well captured by the model. In a similar way, machine
learning methods that recently gained momentum could be
applied for this purpose (Wang et al. 2011). The downside of
these approaches is that they require highly accurate lesion
segmentation and a large number of training datasets.

All of the tested methods assume, in some part, that there
definitely exist changes between the baseline and follow-up
MR images. Because of this assumption, the methods gener-
ally return a huge amount of false positives if applied to cases
with very little or no changes. In order to fully automate the
change detection, a method should either be capable to deal
with such cases or be followed by postprocessing which is
able to better detect and eliminate false positives. Simple
postprocessing methods have limited success, but recent ma-
chine learning algorithms based on high-level features derived
from appearance, shape and location of change regions in the
change mask probably have a much higher potential (Wang
et al. 2011).

Accurate and reliable detection of structural changes from
longitudinal MR brain images remains a challenging task,
since it requires careful tuning of all steps involved in the
change detection process according to the quality of input
MR images. Surprisingly, the results obtained in this study
were not nearly as good as the ones reported by the authors
(Ganiler et al. 2014; Simoes and Slump 2011; Sweeney et al.
2013). This suggests that the performances of the evaluated
change detection methods might either be very data dependent
or dependent on the accuracy of ground truth segmentation. It
is important to note that for the purpose of this study the MR
machine and acquisition protocols were the same across all
longitudinal MR datasets. This is often not the case in clinical
practice, but nevertheless it is expected that a change detection
method will perform consistently in terms of accuracy and
reliability on datasets acquired across different MR machines
and acquisition parameters. However, to objectively evaluate
a method a repository containing multiple publicly available
longitudinal MR datasets acquired on various scanners with
accurate reference change delineations is required. As a step
towards this goal and to enable other researchers to reproduce
the results in this study, we intend to further expand and pub-
licly disseminate our longitudinal MR image datasets on our
website http://lit.fe.uni-lj.si/tools. We consider this work to be
the first, but important step in the direction of creating an
ecosystem of publicly available resources for validation and
comparison of longitudinal change detection methods.

Information Sharing Statement

The magnetic resonance (MR) images for this study were
acquired on a 1.5 T Philips MR machine at the University
Medical Centre Ljubljana (UMCL). All 20 subjects have giv-
en written informed consent at the time of enrollment for
imaging. The authors, who have obtained approval from the
UMCL to use the data, confirm that the data was anonymized.
The MR datasets and ground truth segmentations of white-
matter lesion changes will be made publicly available in raw
raster format on our website http://lit.fe.uni-lj.si/tools.
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