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Abstract. Multiple sclerosis (MS) is a neurological disease characterized by focal lesions and morphological
changes in the brain captured on magnetic resonance (MR) images. However, extraction of the corresponding
imaging markers requires accurate segmentation of normal-appearing brain structures (NABS) and the lesions
in MR images. On MR images of healthy brains, the NABS can be accurately captured by MR intensity mixture
models, which, in combination with regularization techniques, such as in Markov random field (MRF) models, are
known to give reliable NABS segmentation. However, on MR images that also contain abnormalities such as MS
lesions, obtaining an accurate and reliable estimate of NABS intensity models is a challenge. We propose a
method for automated segmentation of normal-appearing and abnormal structures in brain MR images that
is based on a locally adaptive NABS model, a robust model parameters estimation method, and an MRF-
based segmentation framework. Experiments on multisequence brain MR images of 30 MS patients show
that, compared to whole-brain MR intensity model and compared to four popular unsupervised lesion segmen-
tation methods, the proposed method increases the accuracy of MS lesion segmentation. © 2017 Society of Photo-

Optical Instrumentation Engineers (SPIE) [DOI: 10.1117/1.JMI.5.1.011007]
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1 Introduction
Characterization, diagnosis, and prognosis of many neurological
diseases rely on paraclinical symptoms observed on brain
magnetic resonance (MR) images, which can be extracted and
quantified by image analysis methods and are then referred to
as disease imaging markers. Such analysis generally involves
segmentation of brain MR images into normal-appearing and
abnormal structures. For instance, multiple sclerosis (MS) is
a disease characterized by focal inflammatory lesions dissemi-
nated in the brain parenchyma and in the spinal cord; therefore,
an accurate segmentation of these lesions in the MR images is
required to obtain the established imaging markers, such as
lesion volume, count, and location.1 Recent research shows
that atrophy of normal-appearing brain structures (NABS) is
also important for characterizing the progression of MS disease
and response to pharmacological treatment.2 Segmentation of
MS lesions can be performed manually; however, this process
is subjective, tedious, and time-consuming, especially with
recent trends toward high-resolution isotropic three-dimensional
(3-D) brain MR imaging and large patient cohorts imaged in
clinical studies. For the task of accurate and reproducible seg-
mentation of MS lesions, which can also be obtained with high
efficiency, we consider here the automated methods.

Automated segmentation of brain MR images is a challeng-
ing task because of MR acquisition imperfections (MR bias
field and image noise), complex brain anatomy, and varying

manifestations of the abnormal structures. MR imaging provides
a high contrast among the major brain structures, such as gray
matter (GM), white matter (WM), and compartments of cerebro-
spinal fluid (CSF), which are jointly referred to as NABS.
Because of high contrast between the three NABS in MR
images, several recent methods perform segmentation of the
NABS and abnormal structures through estimation of the under-
lying MR intensity model of NABS. The intensity model,
however, is difficult to estimate in the presence of spatial MR
intensity variations that result from the MR bias field,3 non-
stationary noise,4 and structural intensity nonuniformity.5

Methods for MS lesion segmentation that are based on
a whole-brain (WB) MR intensity model of NABS can
either simultaneously perform the bias field correction and
segmentation6 or perform intensity bias correction as a prepro-
cessing step.7 However, because the intensity bias is also struc-
ture dependent,5 it cannot be easily compensated without an
accurate NABS intensity model at hand. To implicitly compen-
sate the intensity bias of different origins, a number of methods
for the segmentation of NABS, which perform local MR inten-
sity modeling of NABS, were proposed.8–10 For example, the
NABS segmentation method by Scherrer et al.8 is based on
the estimation of local and cooperative Markov random fields
(MRFs) on nonoverlapping cubic subvolumes that estimate the
local intensity distribution and thus handle the nonuniformity
without explicit bias field modeling. Conversely, in the method
by Shattuck et al.,10 the bias field is estimated and corrected
prior to segmentation by the estimation of local MR intensity
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models of NABS in overlapping subvolumes. However, appli-
cation of locally adaptive NABS segmentation methods8–10 to
MR images containing abnormal structures, such as lesions,
is not straightforward.

For the segmentation of both NABS and lesions, locally
adaptive intensity models of NABS and of lesions were intro-
duced by Harmouche et al.,11 where, based on training datasets,
the intensity models were learned individually on several differ-
ent anatomical subregions of the brain. A method for post-
processing the NABS and lesion segmentation was proposed
by Biediger et al.,12 which aims to improve segmentation by
local region-growing cellular automata, using as seed points
the voxels previously labeled as lesions. The main idea is to
improve the boundaries of the segmented lesions based on
local properties of the MR images.

In this paper, we propose a method for unsupervised segmen-
tation of normal-appearing and abnormal structures in brain MR
images of MS patients. The proposed method employs a robust
unsupervised mixture estimation based on confidence-level
(CL) outlier detection,13 which is executed on multiple overlap-
ping subvolumes of brain MR image. The subvolumes are posi-
tioned on a rectangular lattice that spans across the coregistered
multisequence MR images, and in each subvolume, a simplified
local NABS intensity model is estimated. The estimated local
models on the lattice are interpolated to form a local model
at each voxel and, then, the fuzzy membership maps of
NABS and MS lesions are computed and used to initialize
the MRF-based segmentation. The proposed method was evalu-
ated on 30 sets of 3T MR images of MS patients, which were
acquired and annotated using the same protocol consistently.
The experiments of this preliminary study indicate that the
locally adapted modeling improves over the commonly used
WB approach and outperforms four other tested unsupervised
methods.

2 Methods
Consider a dataset of brain MR images with M sequences rep-
resented as a nonoriented graph ðV; EÞ, in which the brain voxels
are graph vertices V and codependent voxels are represented by
the vertices connected by graph edges E. Let real-valued vectors
Y ¼ fyjgj∈V ⊂ Rν represent ν-variate observations, or features,

obtained from M different sequences of MR, and categorical
variables Z ¼ fzjgj∈V ⊂ Z represent the hidden labels or

image segmentation. From a probabilistic point of view, the
hidden labels can be obtained by maximum a posteriori (MAP)
estimation of hidden label probabilities given the image sets,
i.e., Z� ¼ arg maxZ∈ZPðZjYÞ. We model this posterior as an
MRF, wherein we assume positivity PðZjYÞ > 0 ∀ Z ∈ Z
and the Markovianity PðzjjZV\fjg; YÞ ¼ PðzjjZNj

; YÞ on the
neighborhood N j ¼ fi ∈ Vjði; jÞ ∈ Eg of each voxel j ∈ V.
According to Hammersley–Clifford theorem,14 the distribu-
tion of such a field has the form of PðZjYÞ ¼

1P
Z 0∈Z exp½−UðZ 0 jYÞ� × exp½−UðZjYÞ� defined by its energy func-

tion UðZjYÞ, and therefore, the hidden labels can be found
as Z� ¼ arg minZ∈ZUðZjYÞ.

In graphical notation, the energy function takes the following
form:

EQ-TARGET;temp:intralink-;e001;326;565UðZjYÞ ¼
X
j∈V

− log UVðzjÞ þ η
X
ðj;iÞ∈E

UEðzj; ziÞ; (1)

where UV and UE are the data and smoothness terms, respec-
tively. The smoothness term UE weighted by a coefficient η
was modeled by Potts model

EQ-TARGET;temp:intralink-;e002;326;488UEðzj; ziÞ ¼
�
0; if zj ≠ zi
1; if zj ¼ zi

: (2)

The data term UV was defined as a linear combination of
intensity potential fI and location potential fL, which are de-
pendent on the intensity features YI ¼ fyIj ⊂ yj; yIj ∈ RMg

j∈V
and the spatial features YL ¼ fyLj ⊂ yj; yLj ∈ R3g

j∈V , respec-
tively, i.e.,

EQ-TARGET;temp:intralink-;e003;326;388UVðzjjYÞ ¼ −fIðzjjYIÞ − γfLðzjjYI; YLÞ; (3)

where γ is a weight coefficient.
In the following, we describe in detail both the intensity and

location potentials for the task of NABS and MS lesion segmen-
tation (see also Fig. 1).
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Fig. 1 The workflow of the proposed segmentation method based either on WB NABS intensity model
(upper row) or on the locally adaptive NABS model (lower row).
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2.1 Intensity Potential Based on Locally Adaptive
NABS Intensity Model

Because only a few major brain structures have high contrast in
the structural MR images, they can be compactly represented by
a structural intensity model. We considered GM, WM, and CSF
to represent a local NABS model, in which each voxel intensity
yIj is modeled by the probability distribution of a Gaussian
mixture model (GMM) with voxel-wise parameter vectors Θj as

EQ-TARGET;temp:intralink-;e004;63;657pðyIjjΘjÞ ¼
X

k∈fGM;WM;CSFg
πjkgðyIjjμjk;Λj

kÞ; (4)

where parameters of GMM at voxel j are the means μjk and

covariances Λj
k of the component k and component weights

πjk ∈ ð0;1Þ, which sum to one. These parameters form a mixture

parameter vector Θj ¼ fπjk; μjk;Λj
kgj∈Vk∈fGM;WM;CSFg. If all local

NABS parameters are equal throughout all image voxels, the
model becomes a stationary WB GMM, commonly used in
brain MR intensity modeling.6,7,15 The assumption that NABS
parameters may vary across the brain volume leads to a locally
adaptive brain intensity model.8,10

The voxel-wise local model parameters estimated for the given
intensity features, i.e., ΘjðYIÞ ¼ fπjk; μjk;Λj

kgj∈Vk¼fGM;WM;CSFg of

the mixture [Eq. (4)], define the intensity potential of the
data term [Eq. (3)] for NABS and MS lesions. Generalizing
the method in Ref. 15, the structure memberships for GM,
WM, and CSF were modeled by the corresponding confidence
levels CLk½yjjΘjðYIÞ� of the component estimates as

EQ-TARGET;temp:intralink-;e005;63;420

fIðzj ¼ kjYIÞ ¼ logf1 − CLk½yIjjΘjðYIÞ�g;
k ∈ fGM;WM;CSFg; (5)

while the MS lesion class membership was determined by com-
bining the fuzzy membership maps of the outlier scores and
hyperintensity maps as
EQ-TARGET;temp:intralink-;e006;63;337

fIðzj ¼ MSjYIÞ
¼ logfCLMAP½yIjjΘjðYIÞ�∧

m 0
Wm 0 ½yIjjΘjðYIÞ�g; (6)

where ∧ is the fuzzy AND operator, and m 0 ∈ 1;M are the MR
sequences in, which lesions appear hyperintense compared to
the NABS, e.g., T2 and/or FLAIR [see Eq. (7)]. The outlier
scores are computed as voxel-wise CL of the MAP, CLMAP,
of components at that voxel following Ref. 13, which can
also be interpreted as a fuzzy membership map since its values
lie in interval [0, 1]. The CL for the k’th component of a GMM is
computed from the cumulative density of χ2m distribution of
Mahalanobis distances d2Λk

ðyjjμkÞ ¼ ðyj − μkÞΛ−1
k ðyj − μkÞT .

The fuzzy membership maps Wm 0 were defined as marginal
Z-scores, i.e., Zk 0;m 0 ðyjÞ ¼ ðyIj;m 0 − μk 0;m 0 Þ∕σk 0;m 0 of observa-
tions with respect to the k 0 ∈ fGM;WMg structures as

EQ-TARGET;temp:intralink-;e007;63;149

Wj;m 0 ¼

8>><
>>:

0; if Zk 0;m 0 ðyjÞ < thr1ðk 0; m 0Þ
1; if Zk 0;m 0 ðyjÞ > thr2ðk 0; m 0Þ
Zk 0 ;m 0 ðyjÞ−thr1ðk 0;m 0Þ
thr2ðk 0;m 0Þ−thr1ðk 0;m 0Þ ; otherwise

;

(7)

where m 0 represents MR sequences m 0 ∈ 1;M, corresponding
to T2w and/or FLAIR modalities. The thresholds thr1ðk 0; m 0Þ
and thr2ðk 0; m 0Þ indicate the levels of Mahalanobis distances
and define the corresponding hypo- or hyperintense MR inten-
sity levels, respectively.

The unsupervised parameter estimation procedure that was
performed to obtain the local intensity potential of a given
MR image dataset is further detailed in Sec. 2.3.

2.2 Location Potential Based on Probabilistic Atlas
Coregistration

The location potential in Eq. (3) was modeled as fLðzjjYI; YLÞ ¼
logfP½zjjAðYI; YLÞ�g, where A ¼ fAGM;AWM;ACSFg is the
set of probabilistic atlases, which are spatially aligned to
input MR images by intensity-based registration16 of the
average T1w atlas and the input T1w images. We used the
MNI305 atlas17 that provides the prior probabilities of GM,
WM, or CSF classes, i.e., P½zj ¼ kjAðYI; YLÞ� ¼ AkðYI; YLÞ,
k ∈ fGM;WM;CSFg while limiting the location of MS lesions
to the regions with WM class label, i.e., P½zj¼MSjAðYI;YLÞ�¼
AWMðYI;YLÞ.

2.3 Robust Estimation of Local NABS Intensity
Models

Due to various MR acquisition artifacts and the presence of
abnormal structures such as MS lesions, the unsupervised esti-
mation of model parameters [Eq. (4)] has to be robust to outliers
in MR intensity distributions. Let ΘðỸIÞ denote an estimate of
the parametric NABS intensity model from the intensity sub-
sample ỸI ⊂ YI . Next, we consider that the local parameters
Θj can be estimated on a subsample of observations in a
close proximity to the voxel j. Thus, the subsample can be
obtained from a local subvolume Sj, centered at corresponding
voxel j, and the parameters of local model can then be estimated
over the corresponding subvolumes, ΘjðYI

Sj
Þ.

Under the assumption that the intensity bias field, structural
nonuniformities, and noise nonstationarities vary smoothly
across the image, the local models Θj can be approximated
from parameters ΘiðYI

Sj
Þ estimated on a sparse lattice of voxels

i ∈ HD ⊂ V, which is defined by the spacing D ¼ ðd1; d2; d3Þ
and then interpolated to obtain the parameter estimates
at remaining voxels.8,10 Local subvolumes are centered at
the lattice nodes, and subvolume size was chosen such that
the neighboring subvolumes overlapped up to 50%, i.e.,
Si ¼ ½ðyLi Þ1 − d1; L1ðyÞ þ d1� × ½L2ðyÞ − d2; L2ðyÞ þ d2� ×
½L3ðyÞ − d3; L3ðyÞ þ d3� where LðyÞ is the spatial location of
the voxel i in 3-D. A relatively high overlap of 50% between
the subvolumes is employed to obtain consistent estimates at
neighboring vertices in the lattice.

The use of local estimation of NABS model parameters was
shown to improve MR intensity modeling and, consequently,
the segmentation accuracy on brain MR images without
abnormalities.10 On MR images of the brains that contain abnor-
mal structures, however, the unpredictable nature and amount of
the MR intensity model outliers preclude a direct application of
previous approaches for model estimation without resorting to
the use of robust estimators. We propose to use the state-of-the-
art robust trimmed-likelihood-based estimator,13 which was
shown to give accurate mixture parameters estimates for sam-
ples contaminated by up to 50% of outliers. The estimator
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employs CL ordering to select the model outliers based on
current model parameters Θ and determines the model param-
eters by solving a local optimization problem ΘiðỸIÞ ¼
arg minΘ

Q
i∈S 0

i
pðyijΘÞ. The subset of voxels S 0

i ⊂ Si of size
½jSijð1 − αÞ� represents inliers found after excluding a fraction
α of model outliers from the set Si.

Once the parameter estimates of local models are obtained on
the sparse grid, the voxel-wise parameters of the NABS model
[Eq. (4)] are approximated by interpolation. The linear interpo-
lation of the multidimensional parameters of Eq. (4) coincides
with the stratified parameter estimation18,19 and is computed as
a linear combination of the related found multidimensional
parameters
EQ-TARGET;temp:intralink-;e008;63;606

πjk ¼
X
i∈HD

wj
iπ

j
k;

μjk ¼
X
i∈HD

wj
iμ

i
k;

Λj
k ¼

X
i∈HD

wj
i ½Λi

k þ ðμik − μjkÞðμik − μjkÞT �; (8)

where wj
i are the weights of the vertex i on the lattice regarding

the voxel j. The linear interpolation [Eq. (8)] is performed by an
interpolation function f̃∶R → R on the 3-D lattice per vector
component (with indices m; n ∈ 1;M) as follows:
EQ-TARGET;temp:intralink-;e009;63;462

½ðπjkÞm�j∈V ¼ f̃f½ðπikÞm�i∈HDg;
½ðμjkÞm�j∈V ¼ f̃f½ðμikÞm�i∈HDg;

½ðΛj
kÞm;n�j∈V ¼ f̃f½ðΛi

kÞm;n�i∈HDg þ f̃f½ðμikÞm · ðμikÞn�i∈HDg
− ½ðμjkÞm�j∈V · f̃f½ðμikÞn�i∈HDg
− ½ðμjkÞn�j∈V · f̃f½ðμikÞm�i∈HDg
þ ½ðμjkÞm · ðμjkÞn�j∈V ; (9)

where · denotes the component-wise product.

3 Experiments and Results

3.1 Datasets

Brain images of 30 patients with MS were acquired on a 3T
Siemens MR scanner. The database consisted of datasets of mul-
tislice T1- and T2-weighted and multislice FLAIR images. A
sequence of preprocessing steps was performed on each dataset,
including intrasubject registration of MR sequences,16 brain
mask extraction on T1w image,20 and intensity inhomogeneity
correction.21 Datasets were resampled to a resolution of
1 × 1 × 3 mm3. The reference segmentation was obtained fol-
lowing the protocol defined in Ref. 22. The MS lesions were
first independently segmented by two expert raters using mainly
FLAIR sequences with occasional consideration of the coregis-
tered T1- and T2-weighted images using the Segmentation
Assistant tools of the publicly available BrainSeg3D software
(available online at Ref. 23), which were previously shown to
improve the consistency of expert annotations of MS lesions.24

The raters revised the merged segmentation maps in several
joint sessions so as to integrate and harmonize their expertise
and finally reach a consensus on segmentation of lesions. The
final consensus segmentations were used as the reference.

Performance of the raters compared to the consensus was 0.78�
0.20 and 0.73� 0.19 in terms of mean Dice similarity coeffi-
cient (DSC).

The 30 datasets were classified according to the total
lesion load (TLL), computed from the reference lesion segmen-
tations, into three groups of subjects with mild (10 patients,
TLL < 5.5 cm3), moderate (10 patients, 5.5 cm3 ≤ TLL ≤
20 cm3), and severe TLL (10 patients, 20 cm3 < TLL <
42 cm3). On five datasets, the raters also delineated the normal
brain structures, i.e., WM, GM, and CSF. The evaluation
criteria computed between the reference segmentation and the
segmentations obtained by the three tested automated methods
were based on Dice similarity coefficient DSC ¼ ð2 × TPÞ∕
ðFPþ FNþ 2 × TPÞ, where TP, FP, and FN represent the
fractions of voxel labeled as true positive, false positive, and
false negative, respectively.

3.2 Parameters and Optimization

In each subvolume, the robust GMM estimator13 was executed
with the trimming fraction set to α ¼ 0.3while the initial param-
eters were obtained as sample estimates based on WB NABS
segmentation of the T1w image with unsupervised nonparamet-
ric Otsu’s thresholding method.25 To exclude the unreliable esti-
mates, the subvolumes that initially had the local fraction of
outliers higher than the value of 0.5 were iteratively enlarged
by scale factor of 1.5 until the aforementioned requirement
was met. The hyperintensity maps [Eq. (7)] were computed for
both methods using thresholds thr1 ¼ 2, thr2 ¼ 3, w.r.t. WM in
T2w and FLAIR modalities and combined to the data term
[Eq. (3)] with the location potential weighted by γ ¼ 1. The
smoothness in Eq. (2) was computed by the Potts model with
six-voxel neighborhood N j and the weight set to η ¼ 0.1. The
final segmentations were obtained by minimizing the energy
function [Eq. (1)] by an accurate and efficient optimizer.26

3.3 Evaluation and Comparison

To make a fair comparison, we compare the proposed unsuper-
vised segmentation method with other popular unsupervised
methods implemented on our database. We tested four such
methods: uVL2001 by Van Leemput et al.,6 uGL2009 by
García-Lorenzo et al.,15 uGL2011 by García-Lorenzo et al.,7 and
LTOADS by Shiee et al.27 The methods uVL2001, uGL2009,
and uGL2011 were implemented using an improved NABS
model,19 whereas LTOADS was applied using its publicly avail-
able implementation (available online at Ref. 28). The proposed
local MR modeling was first validated and compared to the WB
stationary model on a database of images of higher resolution
(1 mm3), and the increase in subvolume size was found to
improve the segmentation performance, with the best perfor-
mance achieved on the smallest considered subvolume of
40 mm3 (see Appendix A for details). For this experiment on
datasets of a lower resolution, we tested the proposed method
that used the locally adaptive NABS intensity model on a regular
lattice with spacing of 30 mm and with local subvolumes of
603mm3.

Segmentation performance in terms of DSC over the three
groups of TLL and over all datasets is shown in Fig. 2. The
proposed method outperformed the other four methods on the
whole database, as well as in groups of moderate and severe
TLL and performed second best after LTOADS in mild TLL
group. The statistical significance of the difference between

Journal of Medical Imaging 011007-4 Jan–Mar 2018 • Vol. 5(1)

Galimzianova et al.: Locally adaptive magnetic resonance intensity models for unsupervised segmentation. . .



the proposed and baseline methods was tested using Wilcoxon’s
signed rank test. The differences were found significant
(p < 0.05) for 10 out of 16 comparisons (see Table 1). No sig-
nificant difference was found for the only decreased perfor-
mance w.r.t. LTOADS in mild TLL group, for increased
performance w.r.t. uGL2011 in severe TLL group, and for
the increased performance across all the methods in moderate
TLL group. On the whole database, the proposed method sta-
tistically significantly outperformed all the comparators. The
consistency of lesion segmentation was validated by analysis
of the TLL as estimated from the reference and the automated
segmentations in terms of Pearson’s correlation coefficient (CC)
value. In this regard, the proposed method performed second
best after LTOADS; however, its resulting estimates were closer
to the reference segmentation TLLs (Fig. 3).

Three of the methods that perform NABS segmentation,
i.e., uVL2001, LTOADS, and the proposed method, were com-
pared on five datasets with manual delineations of CSF, GM,
and WM. The resulting DSC values as shown in Fig. 4 indicate
that the proposed method in general outperformed uVL2001
but was slightly worse than LTOADS. However, the stability
of the proposed method is clearly better as the variation
between different datasets is the lowest among the tested
methods.

Example segmentations by the tested segmentation methods
for datasets of the three different TLL groups (Fig. 5) are shown
in Fig. 6. Note that the segmentations obtained by the proposed
method were more specific (less false positives) than those
obtained by uVL2001, uGL2009, and uGL2011, and also more
sensitive (more true positives) than LTOADS.
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Fig. 2 Performance of the automated lesion segmentation methods in terms of DSC on datasets
grouped according to TLL and on the whole dataset.

Table 1 Median DSC differences of the proposed method and the four baseline segmentation methods. In parentheses are the p-values of
Wilcoxon’s signed rank test.

Datasets uVL2001 uGL2009 uGL2011 LTOADS

Mild TLL 0.07 (p ¼ 0.049) 0.14 (p ¼ 0.004) 0.11 (p ¼ 0.014) −0.06 (p ¼ 0.105)

Moderate TLL 0.01 (p ¼ 0.322) 0.08 (p ¼ 0.083) 0.02 (p ¼ 0.625) 0.09 (p ¼ 0.064)

Severe TLL 0.14 (p ¼ 0.001) 0.10 (p ¼ 0.010) 0.04 (p ¼ 0.193) 0.14 (p ¼ 0.002)

All 0.07 (p ¼ 0.000) 0.11 (p ¼ 0.000) 0.04 (p ¼ 0.006) 0.09 (p ¼ 0.020)
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Fig. 3 Correlations between the automated segmentation methods and the reference lesion segmen-
tation (in terms of Pearson’s CC).
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4 Discussion
We proposed a method for the automated unsupervised segmen-
tation of normal-appearing and abnormal structures in brain
MR images that effectively incorporates locally adaptive NABS
intensity model, robustly estimates its parameters, and then uses
the NABS model to perform the MRF-based segmentation. The
proposed method was tested on datasets of MR images of
30 patients with MS and, compared to four other unsupervised
segmentation methods, showed improved segmentation of MS
lesions.

The main component of the proposed segmentation method
is the locally adaptive NABS model, which aims to address the
local variations of MR intensities in brain images. The within-
structure intensity variations, including NABS and the MS
lesions, are of the main concern,5 which depend on the anatomi-
cal location within the brain. One possible solution is to model
each major structure of the NABS as a mixture model.5,19

Conversely, in our approach, we use a simple three-component
GMM as the NABS model, but to account for the aforemen-
tioned anatomical variations then split the MR volume into
small subvolumes, in which these variations have a lesser
effect. Another source of the spatial intensity variabilities is
the MR acquisition imperfections, such as nonstationarity of
the noise, which can be addressed by noise suppression,4 and
intensity bias field, which can be addressed by the bias field
correction methods.3 The noise suppression and bias field cor-
rection are typically executed in a preprocessing step. Local
adaptation of the NABS intensity model implicitly addresses
these spatially varying MR acquisition imperfections or might
even reduce these artifacts if they are still present after the pre-
processing step was carried out.

Locally adaptive NABS models were previously considered
in several methods for the segmentation of brain MR images of
healthy subjects.8–10 However, when the abnormal structures are
also present in the MR images, the estimation of such models on
local subvolumes becomes very difficult due to several reasons:
(1) the risk of overfitting the NABS model when there is a high
fraction of volume containing abnormalities w.r.t. the volume of
normal structures and (2) difficulty of predicting in advance the
volume or fraction of volume occupied by abnormal structures.
We effectively solved these issues by the use of a robust GMM
estimator,13 which is designed such that the estimates are con-
sistent up to high fractions of outliers (e.g., volume fraction of
abnormalities can be up to 50%) and, therefore, an accurate
assessment of the fraction of outliers is not required in advance.

Recent challenge summary in Ref. 29 reports mean DSC val-
ues for 14 methods ranging from 0.44 to 0.64, while on our data-
set, the values were from 0.43 to 0.47 for the four baseline
methods and 0.53 for the proposed method. Although these val-
ues are comparable, due to the image and annotation quality and
protocol variability in different datasets, performance of the
methods often varies considerably, and the fair comparison is
only possible when all the methods are applied on the same data-
base as was done in this work. Variability within the same database
can also be caused by the inhomogeneity of the MS lesion load
across the subjects. Similar to the work in Ref. 7, we additionally
studied segmentation performance in three groups defined by the
TLL (datasets with mild, moderate, and severe TLL).

The proposed automated segmentation method is unsuper-
vised, thus does not require any training data to learn the param-
eters and instead adapts to the given data by robust estimation of
the NABS parameters. Awell-known disadvantage of the unsu-
pervised methods is that on the same dataset, they typically pro-
vide accuracy lower than the supervised methods that are trained
on the portion of that dataset.30 Nevertheless, their advantage is
in increased generalizing ability compared to supervised meth-
ods, which cannot be straightforwardly applied to datasets that
are significantly different from their training datasets. In addi-
tion, the unsupervised methods do not require the laborious and
time-consuming manual annotation for training, which gives
them more potential for translation to practice.

A limitation of this study is the relatively small database of
30 MS patient images, which were obtained following the same
imaging and annotation protocols. The future work will include
multisite validation on datasets from different vendors and anno-
tations with different protocols as well as application of the
methodology to different neurological conditions.

5 Conclusion
We proposed a method for robust fully automated unsupervised
segmentation of normal-appearing and abnormal structures in
brain MR images that is based on the unsupervised estimation
of local intensity models, which effectively compensate the spa-
tial variability of the structure intensity and the MR intensity
bias field and, therefore, accurately model the intensity distribu-
tions of NABS. The method was validated on datasets of brain
MR images of 30 patients with MS and compared to four other
unsupervised methods.6,7,15,27 The experiments indicate that
the locally adapted modeling gives a statistically significant
improvement over the WB modeling approach and the tested
methods.
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Fig. 5 MR images and the reference segmentations of three patients with mild, moderate, and severe
TLLs.
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Appendix
In this section, we provide results of additional experiments for
validation of the proposed locally adaptive MR intensity model.

A1 Datasets
For this evaluation experiment, we used a database different
from the one used for the experiments described in the main
paper. Specifically, the FLAIR sequence was of higher resolu-
tion, which leads to more variability in intensities across the
image subvolumes. Brain images of 30 patients with MS
were acquired on a 3T Siemens MR scanner. The database con-
sisted of datasets of multislice T1- and T2-weighted and 3-D
FLAIR. A sequence of preprocessing steps was performed on
each dataset, including intrasubject registration of MR sequen-
ces,16 brain mask extraction on T1w image,20 intensity inhomo-
geneity correction.21 Datasets were resampled to an isotropic
resolution of 1 × 1 × 1 mm3.

The 30 datasets were classified according to the TLL, com-
puted from the reference lesion segmentations, into three groups
of subjects with mild (10 patients, TLL < 5.5 cm3), moderate
(10 patients, 5.5 cm3 ≤ TLL ≤ 20 cm3), and severe TLL (10

patients, 20 cm3 < TLL < 42 cm3). On five datasets, the raters
also delineated the normal brain structures, i.e., WM, GM, and
CSF. The evaluation criteria computed between the reference
segmentation and the segmentations obtained by the three
tested automated methods were based on Dice similarity
coefficientDSC ¼ ð2 × TPÞ∕ðFPþ FNþ 2 × TPÞ, true positive
rate TPR ¼ TP∕ðTPþ FNÞ, and false discovery rate FDR ¼
FP∕ðFPþ TPÞ, where TP, FP, and FN represent the fractions
of voxel labeled as true positive, false positive, and false neg-
ative, respectively.

A2 Evaluation of the Model
Here, we analyze the performance of the proposed segmentation
method with WB and the locally adaptive NABS intensity
models with different lattice sampling across the brain volume
on our database with 3-D FLAIR images. The lattice sampling
was varied in four step sizes of d1;2;3 ∈ f20;30; 40;50g mm and
resulted in subvolumes of jSi∈HD j ∈ f403; 603; 803; 1003g mm3,
respectively. On these lattices of different sampling steps, the
locally adaptive NABS models were estimated.

Figure 7 shows the evaluation criteria computed over three
different TLL groups and over the whole database of the 30
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image datasets of MS patients. The lattice with a denser sam-
pling step, that is more locally adaptive NABS model estimates,
consistently improved the segmentation by WB NABS model in
terms of DSC and false discovery rate (FDR) while the true
positive rate (TPR) was not affected as much to deteriorate
the performance. The main improvements in the segmentation
performance obtained by the local robust estimation of GMMs
are due to the improved MS lesion membership maps, which
affect the overall segmentations of both NABS and MS lesions.
The most prominent changes appear in the groups of mild and
moderate TLL, which are considered as more difficult cases for
automated segmentation compared to cases with severe TLL.
Relatively low values in the group of the mild TLL are due
to a known bias of voxel-wise performance measurements,
such as the DSC, since the effect of a misclassified voxel is
higher in such cases.

The impact of a denser lattice sampling step and thus the use
of more locally adaptive NABS models is shown in Fig. 8,
which indicates that increasingly local modeling improves
MS lesion segmentation primarily by elimination of FPs and
preservation of TPs.
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