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Accurate characterization of white-matter lesions frommagnetic resonance (MR) images has increasing impor-
tance for diagnosis and management of treatment of certain neurological diseases, and can be performed in an
objective and effective way by automated lesion segmentation. This usually involves modeling the whole-
brainMR intensity distribution, however, capturing various sources ofMR intensity variability and lesion hetero-
geneity results in highly complexwhole-brainMR intensity models, thus their robust estimation on a large set of
MR images presents a huge challenge. We propose a novel approach employing stratified mixture modeling,
where the main premise is that the otherwise complex whole-brain model can be reduced to a tractable para-
metric form in small brain subregions. We show onMR images of multiple sclerosis (MS) patients with different
lesion loads that robust estimators enable accurate mixture modeling of MR intensity in small brain subregions
even in the presence of lesions. Recombination of the mixture models across strata provided an accurate
whole-brain MR intensity model. Increasing the number of subregions and, thereby, themodel complexity, con-
sistently improved the accuracy of whole-brain MR intensity modeling and segmentation of normal structures.
The proposed approach was incorporated into three unsupervised lesion segmentation methods and, compared
to original and three other state-of-the-art methods, the proposed modeling approach significantly improved
lesion segmentation according to increased Dice similarity indices and lower number of false positives on real
MR images of 30 patients with MS.

© 2015 Elsevier Inc. All rights reserved.
Introduction

Magnetic resonance (MR) imaging is by far themost sensitive imaging
technique for detection of white-matter lesions (Rocca et al., 2013), a
pathological presence of which is highly associated with the clinical out-
comeof certain neurodegenerative andmental disorders, and cerebrovas-
cular diseases (Rovira et al., 2015; Debette and Markus, 2010; Prins and
Scheltens, 2015). Quantification of the number, size and spatial distribu-
tion of the lesions, which are valuable biomarkers, requires accurate seg-
mentation of three-dimensional MR images of several conventional
sequences, like T1-weighted (T1w), T2-weighted (T2w), proton density
weighted (PD), and fluid attenuated inversion recovery (FLAIR). Segmen-
tation can be performed manually by delineating each lesion on every
two-dimensional (2D) slice of anMR image. However, this task is cum-
bersome and time-consuming, butmost of all subjective and thus rather
unreliable. Especially in large clinical trials that involve processing of a
large number of MR images, there is a need for efficient, accurate and
reliable automated lesion segmentation so as to deliver timely and
imzianova).
consistent measurements. Although automated segmentation is be-
coming a general routine in large clinical trials, none of the methods
has yet been widely accepted as the standard method (Lladó et al.,
2012; Vrenken et al., 2013; García-Lorenzo et al., 2013).

Automated methods, in general, apply learned discriminative or
generative models of normal and/or pathological brain structures for
lesion segmentation. Supervised learning uses training datasets with
reference segmentations to combine various MR-intensity derived fea-
tures with different classifiers. The features can be multi-sequence MR
(msMR) intensities normalized across datasets (Shah et al., 2011),
voxel spatial locations (Anbeek et al., 2004), aggregative features of
msMR intensity, shape, location, and neighborhood derived from
image subregions (Akselrod-Ballin et al., 2009), and sagittal brain sym-
metry features (Geremia et al., 2011), while the classifiers can be k
nearest neighbor (k-NN) (Cocosco et al., 2003; Anbeek et al., 2004;
Warfield et al., 2000; Steenwijk et al., 2013), random decision forests
(Akselrod-Ballin et al., 2009; Geremia et al., 2011), Parzenwindow clas-
sifiers (Datta and Narayana, 2013), support vector machines (Lao et al.,
2008), relevance vector machines (Karimaghaloo et al., 2012), and re-
gression models (Sweeney et al., 2013). Unsupervised learning, on the
other hand, does not require training datasets as it searches for natural
clusters of image features formed by the theoretical sources of the
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imaging processes, e.g., in msMR intensity distributions (Van Leemput
et al., 2001; García-Lorenzo et al., 2011; Khayati et al., 2008; Sudre
et al., 2014), combined space-intensity distributions (García-Lorenzo
et al., 2008; Freifeld et al., 2009), and image patch distributions
(Kadoury et al., 2012;Weiss et al., 2013). Both supervised and unsuper-
vised learning strategies can benefit from incorporation of prior ana-
tomical knowledge in the form of statistical atlases (Warfield et al.,
2000; Van Leemput et al., 2001), topological atlases (Shiee et al.,
2010), disease-related rules (García-Lorenzo et al., 2011), physical
models of lesion growth (Prastawa and Gerig, 2008), or healthy popula-
tion intensity distributions (Roy et al., 2014; Tomas-Fernandez and
Warfield, 2015).

As the msMR intensities are the core feature of brain segmentation
methods, the generativemodels aremost commonly themsMR intensi-
ty models of the brain. Under the assumption of intensity homogeneity
ofmajor normal-appearing brain structures (NABS), such as cerebrospi-
nal fluid (CSF), gray matter (GM) and white matter (WM), their joint
intensity probability distributions are particularly convenient to be
modeled by finite mixture models (McLachlan and Peel, 2005). These
are usually estimated from the msMR intensities of the target MR
image set in an unsupervised manner through (efficient) likelihood
maximization (Dempster et al., 1977). Besides the variability of NABS
and lesion proportions from subject to subject, other considerable
sources of MR intensity variability are the lack of MR intensity signal
standardization (Shah et al., 2011), partial volume effect (PVE) at inter-
faces of brain structures (Cuadra et al., 2005), non-stationary Rician
noise (Gudbjartsson and Patz, 1995; Manjón et al., 2010), presence of
spatial intensity variations due to MR bias field (Vovk et al., 2007) and
spatially-varying structure properties (Xiao et al., 2010). To deal with
the aforementioned sources, various modeling approaches have been
proposed, including modeling of NABS as Gaussian mixture models
(GMM) combined with robust parameter estimation (Van Leemput
et al., 2001; García-Lorenzo et al., 2011), modeling NABS and lesions
as a mixture of Gaussian and uniform distributions (Rouaïnia et al.,
2006), modeling explicitly the PVE (Souplet et al., 2008), modeling
NABS mixtures of generalized Gaussian and Rician distribution (Wu
et al., 2011), modeling the normal-appearing subcortical structures
and lesions as a mixture of unimodal intensity clusters (Shiee et al.,
2010), modeling NABS and lesions by mixtures of GMMs (Khayati
et al., 2008; Xiao et al., 2010; Elliott et al., 2013), or by mixtures of
Gaussian and uniform mixture distributions (Sudre et al., 2014).

Accounting for asmany sources ofMR intensity variability and lesion
heterogeneity as possible results in increased complexity of generative
models and, therefore, robust estimation of thesemodels in an unsuper-
vised setting presents a very challenging problem. As demonstrated by
Xiao et al. (2010), the within-structure spatial intensity variability is
better addressed by modeling each structure as a multimodal distribu-
tion and consequently the whole-brain NABS as a mixture of GMMs.
While in supervised learning the optimal number of mixture compo-
nents and their parameters can be learned from the training datasets
(Xiao et al., 2010; Elliott et al., 2013), in unsupervised learning in
order to avoid over-fitting of the NABS components, it is crucial that
all the sources of msMR intensities are captured (Khayati et al., 2008;
Sudre et al., 2014). However, explicitly modeling the outliers of the
NABS model, such as lesions, vessels, and iron deposition, further
increases the model complexity and might thus result in false positives
when the lesion volume is small or absent. Moreover, none of the
modeling approaches referred above employed explicitly the main
source of intensity variability, i.e., the spatial variation of a structure's
property.

Spatially-adaptive msMR models were introduced for supervised
learning of the intensity distributions of NABS and lesions (Harmouche
et al., 2015), and for unsupervised learning of the intensity distributions
of NABS in healthy brains (Scherrer et al., 2009; Tohka et al., 2010). In the
latter approaches, however, both model estimation and segmentation
are performed locally and, therefore, additional spatial regularization of
the local models is needed to obtain consistent segmentations. The reg-
ularization may substantially increase model complexity and model
estimation.

In this paper, we propose to use stratified mixture modeling for
robust unsupervised estimation of the distribution of msMR intensities
of NABS and then detect lesions as outliers of the generativemodel. Two
different stratified models were evaluated, one based on parameter-
and the other on model-wise recombination over strata into a whole-
brain generative model of NABS intensity distribution. The latter better
captured theNABS intensity distributions according to better goodness-
of-fit and provided more accurate segmentation of normal structures,
thus it was employed for upgrading lesion segmentation methods. The
main premise of the proposed approach is that an otherwise complex
generative model of the whole-brain distribution of msMR intensities
reduces to a tractable parametric form in small enough local brain sub-
regions, as shown previously by other researchers (Scherrer et al., 2009;
Shattuck et al., 2001). However, because lesions may represent a sub-
stantial and variable fraction of observations in small brain subregions,
they can adversely impact the estimation of local msMR intensity
models. Our solution to this problem is an effective spatial stratification
of the brain into plausible subregions such that they contain a certain
minimal and maximal fraction of NABS and outliers, respectively. For
this purpose, results of a tentative whole brain segmentation are used.
In this way, the minimal requirements of the robust unbalanced mix-
ture model estimator (Galimzianova et al., 2015) are satisfied and,
therefore, a good estimation of the whole-brain stratified mixture can
be obtained.

The proposed stratified mixture modeling approach improves the
estimation of the distributions of msMR intensities of NABS on 30 real
MR image datasets of patients with multiple sclerosis (MS). As such, it
was incorporated into three unsupervised lesion segmentationmethods
based on the model outlier detection paradigm (Van Leemput et al.,
2001; García-Lorenzo et al., 2009, 2011). Compared to the original
implementations of these methods based on GMM of the whole-brain
msMR intensities, the upgraded implementations with stratified mix-
ture models significantly improved lesion segmentation in patients
with mild and moderate lesion loads. The improvements were mainly
due to considerably lower number of false positives. A comparison to
three other state-of-the-art methods showed that one of the upgraded
implementations was superior in segmentation performance on the
majority of the MS patient datasets.

MR intensity modeling

The generative model of msMR intensities of major normal-
appearing brain structures that we propose aims to account for sources
of msMR intensity variability, while keeping the model complexity low
to enable efficient and robust estimation of its parameters.

The proposed generative model is based on the idea of stratified
sampling (Thompson, 2012), which providesmeans to collect the statis-
tics of an inhomogeneous sample through collecting and recombining
the statistics acrossmore homogeneous subsamples (strata). The collec-
tion of statistics, for our purposes, refers to the estimation of the model
parameters. The strata should bemutually exclusive and collectively ex-
haustive, i.e., every observation in the sample must be assigned to only
one stratum, and the strata should cover the whole sample. Compared
to the approach, in which the generative model is estimated from the
original inhomogeneous sample, the advantage of stratified model
estimation and recombination of the models, or model parameters,
over strata is that it providesmore accurate and robustmodel estimates.

In the context of modeling intensities of brain MR images, for exam-
ple, inhomogeneity of MR intensities may originate from a spatially
smooth multiplicative MR bias field (Vovk et al., 2007). Relying on the
spatial smoothness of the bias field, the MR intensities are generally
considered homogeneous over small enough local brain subregions
(Shattuck et al., 2001). Similarly, the natural variability of brain



Fig. 1. Example of spatial brain stratification: (upper row) boundaries of subregions
(green) superimposed over axial slices of the FLAIR image, and (lower row) the cardinal-
ities of theNABS clusters and outliers over the obtained subregions. Spatial stratification is
performed in 3D and by construction ensures that each strata contains observations from
each of the three main structures (CSF, GM and WM).
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structures across the lobes (Xiao et al., 2010) can be considered negligi-
ble within local subregions smaller than the sizes of the lobes. Based on
these observations, we consider local subregions of the brain as strata
and apply the principles of stratified sampling to themodeling and esti-
mation of the joint probability distribution of brain msMR intensities.

Stratified mixture models

Let Y = {y1, …, yN} be a collection of M-dimensional vectors in the
real domain ℝM, which are composed of msMR intensities (of conven-
tional T1w, T2w and PD or FLAIR sequences) sampled from the spatial
domain Ω of the brain with coordinates X = {x1, …, xN} in the real
domain ℝ3. Let Z = {z1, …, zN} be a collection of indicator variables
zj = (zj1, …, zjL) with zj

l taking the value 1 iff the j-th voxel corresponds
to a hidden label l ∈ {1, …, L} that indicates one of the major normal-
appearing brain structures (i.e., CSF, GM or WM).

Although conventional MR imaging sequences generally produce
observations yj that form L separated clusters in M-dimensional space
for each of these structures, the imperfections of the physical MR acqui-
sition process such as MR bias field, varying structural properties, PVE
and non-stationary noise can strongly influence the form of these clus-
ters. The joint probability distribution of this process is captured by a
compact but very general representation of a finite mixture model
p(yj|Θ) =∑l = 1

L πlp(yj|θl), in which each cluster is a mixture of R distri-
butions of the same parametric form (Xiao et al., 2010):

p yj θlj
� �

≃
X

r
πl;rp yj θl;r

��� �
ð1Þ

where, for the l-th structure and its r-th component, θl,r is the vector of
parameters and πl,r is the mixture weight. When approximating the
component distributions by a Gaussian as p(yj|θl,r) = g(yj|μl,r, Λl,r) with
mean μl,r and covariance matrix Λl,r, the l-th structural model is defined
by the set of parameters θl = {μl,r, Λl,r}r = 1,…,R.

To obtain strata that are homogeneous, mutually exclusive and col-
lectively exhaustive, we parcellate (stratify) the spatial domain Ω of
the brain image into R non-overlapping subregions Ωr, r = 1, …, R.
The joint probability distribution is obtained by a weighted sum of
stratum-specific distributions (Breunig, 2008; Wakimoto, 1971) as:

p yj Θj
� �

¼
XR
r¼1

wrp yj Θrj
� �

ð2Þ

where wr = |Ωr|/|Ω|, | ⋅ | is the number of observations in a region used
for estimation, and Θr = {πl,r, μl,r, Λl,r}l = 1,…,L is a set of parameters for
region r. Based on the above formulations, the priors of the l-th structure
are πL = ∑r = 1

R wrπl,r and the corresponding stratified mixture model
(SM-GMM) has L components of the following form:

p yj Θlj
� �

¼ π−1
l

XR
r¼1

wrπl;r g y j μ l;r ;Λ l;r

���� �
: ð3Þ

Note that the traditional stratification of the statistics such as means
and covariances of the clusters, i.e. as in Wakimoto (1971):

μ l ¼
XR

r¼1
wrμ l;r;

Λ l ¼
XR

r¼1
wr Λ l;r þ μ l;r−μ l

� �
μ l;r−μ l

� �T
� � ð4Þ

results in a recombination of the mixture model parameters over
strata (stratified model parameters (SP-GMM)) into a conventional
L-component GMM with weights πl = ∑r = 1

R wrπl,r. Such a GMM is
expected to have parameter estimates affected by different brain subre-
gions, however, it is generally over-simplified, as will be shown in
Section MR intensity modeling.
Robust model estimation

Estimation of the stratified mixture models (Eq. 3) proceeds by spa-
tial stratification of the brain region into R strata and performing R inde-
pendent three-component (L = 3) GMM parameter estimations. For
robust estimation of a Gaussian mixture with parameters Θr, each of
the subregionsΩr, r=1,…, R should contain a sufficient number of ob-
servations Nr = |Ωr|, whereas the required minimum number of obser-
vations depends on the employed estimator.

We use an estimator of unbalanced mixtures (Galimzianova et al.,
2015), a trimming-based approach that is robust to outliers at an a priori
specified trimming fraction α. Parameter α represents some high, mar-
ginal value of an expected outlier fraction and can take values in the
range [0, 0.5]. Besides, the characteristics of each subregion Ωr should
meet the following three criteria for a solution (Neykov et al., 2007):
1) the sample size Nr must be larger than L(M + 1); 2) the actual frac-
tion of outliers h* must be less than hmax ¼ 1

Nr
ðNr−LðM þ 1ÞÞ=2≈ 0:5;

and 3) α should be set higher than h*. In order to meet the last two
criteria, we need to roughly estimate the outlier map. Since it is suffi-
cient to find an upper limit of the actual outlier fraction h, we compute
a tentative over-estimated outlier map O = {o1, …, oN}, oj ∈ {0, 1} by
fitting a three-component GMM using the robust estimator with high
trimming fraction on the msMR intensities of the whole brain volume
Ω.

It can be easily verified that for any regionwith the fraction h of out-
liers, a set of subregions will have a maximal fraction of outliers not
lower than h. Therefore, spatial stratification of the brain region is pref-
erably performed by top-down approaches that, given an initial distri-
bution of outliers, can assess at each subregion the fraction of outliers
and thus guarantee that a subregion does not have to be further
subdivided unless it has an outlier fraction lower than h. We spatially
stratified thebrain region as described inAlgorithm1,whichfinds strata
such that they: 1) meet the stratification principles by being mutually
exclusive, collectively exhaustive, and containing more homogeneous
subsamples, 2) allow localmixture estimation by verification of the rep-
resentativeness of all the NABS components, and 3) allow reliable ro-
bust estimation by meeting the estimator requirements. An example
of a spatial stratification is shown in Fig. 1. Note how highly unbalanced
and contaminated by various fractions of outliers are the mixtures in



1034 A. Galimzianova et al. / NeuroImage 124 (2016) 1031–1043
R = 40 strata. Nevertheless, the stratification algorithm ensures that
each strata contains observations from each of the threemain structures
(CSF, GM and WM) with corresponding mixture weight no less than
πmin.

After spatial stratification, the stratum-specific parameters of the
estimator αr should be set to a value above the true outlier fraction in
region r (Neykov et al., 2007; Galimzianova et al., 2015). As hr ¼ 1

N

∑ j∈Ωoj is an over-estimated fraction of outliers, we set αr = hr. The
weightswr of each stratumare also updated according to their contribu-
tion to the whole-brain model estimate as wr = (1 − αr)Nr/(1 − α)N,
i.e., according to the fraction of inliers in a stratum. The parameters
Θr compactly encode the msMR intensity variability within each subre-
gion (Fig. 2) and, following (Eq. 3), form the stratified mixture model
parameters.

Algorithm 1. Spatial brain stratification
Input: whole-brain region Ω with spatial coordinates X, tentative

NABS segmentation Z = {z1, … zN}, initial map of outliers O =
{o1, …, oN}, minimal NABS component weight πmin, maximal outlier
fraction hmax, minimal size of the subregions Nmin.

Output: a set of R non-overlapping subregions or strata {Ωr}r = 1,…,R,
∪rΩr = Ω.

Initialization:Set the whole-brain region as the initial subregion,
i.e., Ω1 :=Ω.

Stratification:

1. If the number of the brain voxels in the subregion Nr ≤ Nmin or the
outlier fraction is not lower than a threshold, 1

Nr
∑ j∈Ωoj ≥ hmax ,

return the subregion Ωr.
2. Find the longest side of the subregion imax :¼ argmaxi∈f1;2;3gðmax j∈Ωr

xij−min j∈Ωr x
i
jÞ.

3. Make a linear split at themedian of outlier distribution along imax, i.e.,
obtain Ωr1 ∪ Ωr2 = Ωr such thatΩr1 ¼ f j ∈ Ωr : x

imin
j b ximin� g,Ωr2 ¼

f j∈Ωr : x
imin
j Nximin� g and ximin� : ∑ j∈Ωr1

oj ≈ ∑ j∈Ωr2oj.
4. If at one of the two obtained regions r′∈ {r1, r2} a) the outlier fraction

is higher than a threshold, 1
Nr0

∑ j∈Ωr0 oj N hmax, or b) the weight of
one of the NABS components is smaller than a threshold, minl

∑ j∈Ωr0 z
l
j=ðNr0−∑ j∈Ωr0 ojÞ b πmin , or c) the number of observations

is smaller than a threshold, Nr0 b Nmin , return the current subregion
Ωr; else recursively stratify (i.e., go to step 1) the two obtained
regionsΩr1 and Ωr2.
Fig. 2. An example of local msMR intensity model estimation over different brain subregions at
local mixture estimates shown at 0.9-confidence levels with components corresponding to CSF
Lesion segmentation

The proposed stratifiedmixturemodeling approachwas incorporat-
ed into three unsupervised lesion segmentationmethods (Van Leemput
et al., 2001; García-Lorenzo et al., 2009, 2011). All three methods per-
form estimation of the generative model of msMR intensities of
NABS, but mainly differ in the formulation of the objective function
and in the way lesions are detected as model outliers. In these
methods, the generative model of brain voxel intensities was origi-
nally represented by a three-component GMM with p(yj|θl) =
g(yj|μ l, Λl), l ∈ {CSF, GM, WM}, which we have upgraded with the pro-
posed stratified mixture model (Eq. 3). A summary of the three
methods is given in Table 1, while more detailed descriptions of the
methods and adaptations required to incorporate the stratifiedmixture
model are given below.

Segmentation by model outlier detection: VL'2001

The method VL'2001 (Van Leemput et al., 2001) estimates mixture
parametersΘ throughmaximization of the following objective function:

Qw Θ Θ it−1ð Þ
���� �

¼
XN
j¼1

XL
l¼1

p itð Þ
jl t itð Þ

jl log p yj θ
it−1ð Þ
l

���� �
ð5Þ

where it denotes iteration, pjl
(it) = p(yj|θl(it − 1))πjlAtlas/

∑kp(yj|θl(it − 1))πjlAtlas are the posterior likelihoods and πjlAtlas the priors
of the l-th brain structure at voxel j based on the MNI305 brain atlas
(Evans et al., 1993) co-registered to the msMR images. The robustness
of model estimation was improved by typicality weights tjl

(it) (Van
Leemput et al., 2001) computed for each of the L structures of NABS, i.e:

t itð Þ
jl ¼

p yjjθ it−1ð Þ
l

� �
ω itð Þ

jl

p y jjθ it−1ð Þ
l

� �
ω itð Þ

jl þ p ylκ jθ it−1ð Þ
l

� �
u itð Þ
j ω itð Þ

j;WM þ v itð Þ
j ω itð Þ

j;CSF

� � ð6Þ

where ωjl
(it) are Markov random field (MRF) priors computed by mean-

field approximation, uj
(it) and vj

(it) are the hyper- and hypo-intensity
constraints, respectively, and p(yκl |θl

(it − 1)) is the likelihood at a confi-
dence level (CL) corresponding to the value of parameter κ.

In the original method κ represented a threshold on Mahalanobis
distance to determine yκl : (yκl − μl)Λl

−1(yκl − μl)T= κ, and subsequently
a proximity of temporal, parietal, frontal, and occipital lobes (top row), and corresponding
(cyan), GM (green), and WM (yellow).



Table 1
Summary of three unsupervised lesion segmentation methods tested with the proposed stratified mixture model.

Method Objective function Spatial constraints Lesion detection Parameters

VL'2001 Expectation weighted by
structure typicality (Eq. 5)

MRF prior Low model likelihood and structure typicality κ = 3.0

GL'2009 Graph energy (Eq. 8) Ising model Fuzzy maps on model confidence level (Eq. 7) λ = 5, α = 0.3, κb = 2.5, κe = 3.5
GL'2011 Trimmed likelihood (Eq. 11) Connected components of lesions Threshold on model confidence level α = 0.3, δc = 0.3, ph = 10−2
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p(yκ
l |θl

(it − 1)), while here parameter κ determines the CL asδκ ¼ Pχ2
M
ðκ2Þ,

for which the corresponding yκ
l is found by numerical integration of the

l-th component likelihood over domain Ω as:

ylκ : CLκ ¼ δκ ;

CLκ ¼
Z
Ω ylκð Þ

p ω θljð Þdω;

Ω yl
� �

¼ ω∈Ω : p ω θljð Þ≥p ylκ θlj
� �n o

:

ð7Þ

The resulting yκ
l is used to compute the likelihood function

p(yκl |θl(it − 1)) in (Eq. 6).
At each iteration, the brain stratificationwas performed according to

the current segmentation zj
l = pjltjl and the estimates of the model

parameters Θ(it) were found using the original W-estimator proposed
by Van Leemput et al. (2001). In order to increase robustness, the
brain region was stratified as in Section Robust model estimation
wherein the outlier map Owas replaced by the soft atypicality weights
found at iteration it as o(it) = (1− ∑l

Lpjltjl).
The hyper-intense outliers (e.g., lesions) are defined with

respect to GM mean intensity by the indicator variable uj
(it) =

∧ m ∈ {T2w,FLAIR}(Pm(yj| θGM,m
(it − 1)) N 0.5), where ∧ (⋅) is the logical

conjunction (AND) operation and Pm is the marginal cumulative
probability function computed on MR sequences m. The hypo-
intense outliers (e.g., vessels) are defined analogously by the indicator
variable vj

(it) = ∧ m ∈ {T2w,FLAIR}(Pm(yj| θGM,m
(it − 1)) b 0.5).

Given the estimated mixture parameters Θ, the probability maps of
hyper- and hypo-intense outliers are given by uj

(it)(1 − ∑l
Lpjltjl) and

vj
(it)(1−∑l

Lpjltjl), respectively. The final lesion segmentation is obtain-
ed by thresholding the hyper-intense outlier probability map at 0.5.

Segmentation by multi-modal graph cuts: GL'2009

Lesion segmentation in GL'2009 is formulated as a two-label graph-
cut problem with the following total energy function (García-Lorenzo
et al., 2009):

E Zð Þ ¼ λ
XN
j¼1

Uv zj
� �þ X

i; jf g∈N i≠ j

B yi; yj

� �
I zi≠z j
� � ð8Þ

where Uv is the intensity potential, B(yi, yj) the spectral gradient of
msMR images computed in neighborhood N , and I(⋅) is the indicator
function. The linear weight λ is a user-defined parameter balancing
the influence of the first term. The intensity potentials are computed
by a fuzzy conjunction operator between FLAIR and T2w hyper-
intensity fuzzy maps (Wj,FLAIR and Wj,T2w, respectively) and minimal
confidence levels mCLj, i.e.:

Uv zj
� � ¼ − log ∧ W j;FLAIR;W j;T2w;mCLj

	 
� �
: ð9Þ

Analogously to CL in (Eq. 7), the minimal confidence levels mCLj ¼
minlð∫Ωðy jÞpðωjθlÞdωÞ were computed by numerical integration over

corresponding confidence regions Ω(yj) = {ω ∈ Ω : p(ω|θl) ≥ p(yj|θl)}.
Mixture parameters θl were obtained by the stratified modeling ap-
proach as described in Section Robust model estimation.
The hyper-intensity fuzzy maps form ∈ {T2w, FLAIR} are defined as:

W j;m ¼
0; if x b δb
1; if x N δe
x−δb
δe−δb

; otherwise

8>><
>>:

ð10Þ

where x = sgn(Pm(yj|θWM,m) − 0.5) [− log (p(yj | θWM,m) /
maxjp(yj|θWM,m))]1/2 and Pm(yj|θWM,m) is a value of marginal cumulative
probability function, while δb = δ(κb) and δe = δ(κe) are the hyper-
intensity constraints on confidence level, where δðκÞ ¼ ð1þ sgnðκÞ Pχ2

1

ðκ2ÞÞ =2 with sgn(⋅) being the signum function.
The obtained lesion segmentation is post-processed to eliminate

groups of connected voxels that are adjacent to the brain mask border.
In our implementations, the segmentation of lesions was obtained by
minimizing the energy function in (Eq. 8) by an efficient approximate
optimizer (Komodakis et al., 2008).

Segmentation by trimmed likelihood estimation: GL'2011

In GL'2011, the trimmed likelihood (TL) objective function is formu-
lated as (García-Lorenzo et al., 2011):

TLðΘ Θ it−1ð ÞÞ ¼ ∏
N−αN

j¼1
p yv itð Þ jð Þ Θ

it−1ð Þ
���� ������ ð11Þ

where ν(it)( j) is a permutation of indices j that ensures a decreasing

order of likelihoods pðyνðitÞð jÞjΘðit−1ÞÞ and α represents the trimming
fraction. Parameters Θ are obtained by maximizing TL, in which αN
observations with lowest likelihood are trimmed from the objective
function. Note that the permutation ν(it)( j) is updated at each iteration.
Themixture parametersΘwere obtained by the stratifiedmodeling ap-
proach as described in Section Robust model estimation.

Given the estimated mixture parameters Θ, the set of voxels
representing candidate lesions is found by thresholding minimal confi-
dence levelsmCLj ≤ δc computed as in (Eq. 7)with δc as the input param-
eter. Furthermore, the set of voxels is post-processed by applying three
heuristic rules, specific for MS lesions: 1) elimination of voxels that are
not hyper-intense according to Pm(yj|θWM,m) N 1 − ph, where
Pm(yj|θWM,m) is the marginal cumulative probability function computed
for MR sequencesm ∈ {T2w, FLAIR} and ph is a fixed parameter, 2) elim-
ination of groups of connected voxels forming a volume smaller than
9 mm3, and 3) elimination of groups of connected voxels that are adja-
cent to the border of the brain mask and those that are not adjacent to
the WMmask.

Experimental results

Experiments involved validation of the proposed MR intensity
modeling and validation of lesion segmentation methods, which in-
volved the original method implementations and the implementations
based on the proposed stratified mixture model of msMR intensities of
normal-appearing brain structures. Since the comparison with respect
to other state-of-the-art methods is an important aspect of validation,
additional three lesion segmentation methods were evaluated. Valida-
tionwas performed on clinical image datasets withmanual annotations
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of normal structures and pathology. The descriptions of validation
datasets, validation experiments and results are given in the following
subsections.
Validation datasets

Clinical datasets consisted of conventional MR images of 30 patients
withMS. For each patient T1w, T2w and FLAIR sequenceswere acquired
on a Siemens 3 T MR machine in axial multi-slice no-gap acquisition
modewith 0.4 × 0.4mm2 in-plane sampling and 3.3mmslice thickness.
Automated brain mask extraction (Iglesias et al., 2011), with manual
corrections where necessary, was performed on T1w image, followed
by rigid registration of T1w and T2w images to corresponding FLAIR im-
ages. Each of the images was corrected for intensity inhomogeneities
using N4 (Tustison et al., 2010) and downsampled to the in-plane reso-
lution of 1×1mm2. To validate themethods, theWM lesionswereman-
ually segmented in all 30 MR image datasets independently by two
neuroradiology experts, which then cross-validated and updated their
segmentations until a consensus on the final lesion segmentations was
reached. In a similar way, manual segmentations of the normal brain
structures (CSF, GM, WM) were performed on 7 msMR image datasets.

The MS patients had different disease severity, which is character-
ized by total lesion load (TLL), where higher TLL correlates with higher
patient disability. To analyze the performance of methods with respect
to TLL the MR image datasets of 30 patients were divided into three
groups according to TLL:mild (10 patients, TLL ≤ 5 ⋅ 103mm3),moderate
(10 patients, 5 103 mm3 b TLL b 20 ⋅ 103 mm3) and severe (10 patients,
TLL ≥ 20 ⋅ 103 mm3).
Fig. 3. Examples of model estimation on three selected datasets of images with different lesion
segmentations as CSF (cyan), GM (green), WM (yellow), and lesions (red); and distribution est
0.7,0.5,0.3 and 0.1 confidence levels.
MR intensity modeling

Validation of MR intensity modeling involved the estimation of gen-
erative models of msMR intensities of NABS and the assessment of the
obtained models based on goodness-of-fit to the histograms of the
msMR intensities and corresponding NABS segmentation performance.
The initial model parameters per stratum were obtained from a simple
tentative segmentation based on Otsu's thresholding of the T1w MR
image. The samples for model estimation were comprised of all of the
msMR intensities in a brain mask. The initial parameters Θ were found
as maximum-likelihood estimates and a fraction α = 0.3 of intensities
with highest CLs were marked as outliers O.

Within the framework of stratified sampling, the generative model
was obtained either by the estimation of model parameters on strata
and recombination of the mixture models (Eq. 3) (i.e., SM-GMM) or
by estimation and recombination of mixture model parameters over
strata (i.e., SP-GMM) into the conventional three-component GMM
(Eq. 4). Here we study the performance of these two models and com-
pare them to two other intensity models estimated from the whole-
brain msMR intensity observations: the three-component GMM and
the mixture of GMMs (M-GMM). The first model used one component
per CSF, GM and WM structures, while the M-GMM was implemented
similar to the intensity model described in (Ashburner and Friston,
2005) using two components for CSF, three for GM, and two for WM.
Both models were estimated using the robust estimator (Galimzianova
et al., 2015) at the same trimming fraction parameter value α= 0.3.

The two proposed approaches were tested for different numbers of
strata (subregions of theMR image), obtained by the spatial brain strat-
ification (Algorithm 1) with parameters πmin = 0.01 and varying
loads. (a) Multivariate MR intensity observations colored in accordance with the manual
imates according to (b) GMM, (c) SP-GMM, (d) M-GMM, and (e) SM-GMM shown at 0.9,



Fig. 4. The goodness-of-fit of the estimated SP-GMM (gray line), SM-GMM (black line), and M-GMM (dark gray star) measured by Jeffrey's divergence (JD) with respect to the msMR
intensity histograms of brain structures CSF, GM, WM, and overall NABS, based on reference segmentations. The JD values were averaged over 7 MR image datasets with brain structure
segmentations tested at different values of parameter Nmin. The bars indicate the first and third quartiles of JD values.
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Nmin ∈ {100, 50, 25, 10, 7.5, 5, 2.5, 1} × 103, that resulted in a different
median number of subregions R ∈ {2, 4, 10, 21, 27, 40, 74, 147}.

The impact of cut direction in the spatial stratification was also test-
ed. For this purpose, the spatial coordinates X of the brain voxels were
found in a coordinate systemwith image-aligned axis and at its nine ro-
tations, {π/8, π/4, 3π/8} radian angles about each of the three axes of the
3D image. Together with the image-aligned coordinates, there were
overall 10 spatial orientations tested. Similarly to the work of Xiao et
al. (2010), the goodness-of-fit was measured by computing the
Jeffrey's divergence (JD) with respect to the three-dimensional histo-
grams of msMR intensities of CSF, GM and WM brain structures, and
their union, NABS, based on reference segmentations using

ffiffiffiffi
N

p
as the

number of histogram bins. Lower values of JD indicate better modeling
of msMR intensities of NABS. The segmentation performance was mea-
sured by computing the overlap in terms of Dice similarity index (DSI)
(Dice, 1945) between the maximum a posteriori classifications of the
estimated GMM, M-GMM, SP-GMM and SM-GMM models and the
manual segmentations of NABS.

The main advantage of stratified mixture modeling compared to
conventional mixture modeling approach is the capability to capture
arbitrarily complex joint probability distributions as shown in Fig. 3,
while remaining robust to outliers, e.g., lesion intensity observations.
Since the msMR intensity distributions are comparable across datasets,
the obtainedmixturemodels should also be similar. Fig. 3 demonstrates
thatmore accurate and stablemodels are obtained by the two stratifica-
tion approaches as compared to whole-brain model estimation (cf. the
CSF components across the three datasets).

The goodness-of-fit based on JDs and segmentation performance of
NABS based on DSI are shown in Figs. 4 and 5, respectively, over 7
Fig. 5. The DSI values of the estimated SP-GMM (gray line), SM-GMM (black line), and M-GMM
based on reference segmentations. The DSI values were averaged over 7 MR image datasets w
indicate the first and third quartiles of the DSI values.
clinical MR image datasets for which manual NABS segmentations
were available. Note that Nmin = N corresponds to the whole-brain
GMM estimation, which had the highest value of JD and lowest value
of DSI, and, thus, the worst model fit. In general, stratification
(i.e., Nmin b N) improved the goodness-of-fit and segmentation perfor-
mance of the models of msMR intensities of NABS with decreasing
Nmin (and thus increasing R). Cut direction had a minor impact on the
performance. The approach based on SM-GMM consistently provided
a better fit compared to the approach based on SP-GMM. Furthermore,
based on Wilcoxon signed rank test, the improvements for JD and DSI
metrics were statistically significant (p b 0.01) for Nmin b 50 ⋅ 103 for
all the structures considered (CSF, GM, WM and NABS) and for the
weighted average of DSI values (WA). The absolute differences in
goodness-of-fit (JD) were especially prominent for the CSF. The reason
is that CSF has two large interfaces to GM andWM and is thus most af-
fected by PVE, which cannot be captured by a single Gaussian in the
three-component GMM. Using SP-GMMmodel the DSI increased nota-
bly for CSF, but remained the same for GM and WM regardless of the
stratification parameter Nmin. Conversely, using SM-GMM model the
DSI increased notably and consistently for all three structures, indicat-
ing overall improved segmentation performance for lower Nmin.

Clearly, the three-component GMM is inadequate for accurate
modeling of the whole-brain msMR intensity distributions (Fig. 3b,c).
The higher degree-of-freedom M-GMM and SM-GMM models enable
better modeling of msMR intensity distributions of normal structures
(Fig. 3d,e). The results obtained for M-GMM provided higher
goodness-of-fit (i.e., lower JD score) compared to the simple three-
component GMM and also to the SP-GMM and SM-GMM for
Nmin ≥ 50 ⋅ 103 (Fig. 4). Although the obtainedDSI of NABS segmentation
(dark gray star) with respect to CSF, GM, WM, and their volume weighted average (WA),
ith brain structure segmentations tested at different values of parameter Nmin. The bars



1 LTOADS: https://www.nitrc.org/projects/toads-cruise/.
2 LST: http://dbm.neuro.uni-jena.de/software/lst/.
3 MS challenge 2008: http://www.ia.unc.edu/MSseg/.

Fig. 7. The DSI differences for each of the 30 MR image datasets of MS patients for three lesion segmentation methods (Table 1) tested with original and the proposed stratified mixture
model of msMR intensity distributions. For each method we report the means and medians of DSI differences and p-values of Wilcoxon’s signed rank test.

Fig. 6. Box-whisker diagrams of DSI values grouped according to reference TLL for the three lesion segmentationmethods (Table 1) based on original (gray) and the proposed updated (u;
black) generative models of msMR intensity distributions and for three state-of-the-art methods. The values above the updated three methods are the results of the signed rank test over
the TLL groups, where d are the median differences between the upgraded and the original methods, and p are the p-values.
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was slightly higher for CSF with the M-GMM method compared to
the three-component GMM and to the SP-GMM and SM-GMM for
Nmin ≥ 100 ⋅ 103, the DSIs for GM and WM segmentations, and overall
WA were substantially lower with the M-GMM compared to all other
tested methods. The M-GMM might require case-specific selection of
optimal number of components per structure, however, high number
of Gaussians could result in overfitting. Conversely, when using SM-
GMM model, both goodness-of-fit and the segmentation performance
improved notably and consistently for all three structures for lower
Nmin (i.e., more strata), the parameter which is intuitive and easier to
adjust, and, more importantly, presents lower risk of overfitting. There-
fore, we choose to employ the SM-GMM for upgrading lesion segmenta-
tion methods.

Lesion segmentation

Validation of lesion segmentation methods involved comparison of
the performances of three unsupervised lesion segmentation methods
(Van Leemput et al., 2001; García-Lorenzo et al., 2009, 2011), imple-
mented either in their original formor upgradedwith the stratifiedmix-
ture modeling (Section Stratified mixture models). To serve as baseline
for comparison, methods developed by Shiee et al. (2010) and Schmidt
et al. (2012), both of which have publicly available implementations,
and are referred to as LTOADS1 and LST2 were evaluated. The third
method (Souplet et al., 2008) was from the winners of 2008 MS lesion
segmentation challenge,3 for which the implementation was devised
from the descriptions in the literature. Validation involved execution
of the methods on 30 clinical image datasets of patients with MS,
followed by evaluation of DSI between the obtained and reference
manual lesion segmentations.

In the first experiment, we study the dependence of lesion seg-
mentation performance on the choice of parameter Nmin. As in the
previous experiment, the spatial brain stratification (Algorithm 1)
was applied with parameters πmin = 0.01 and varying
Nmin ∈ {100, 50, 25, 10, 7.5, 5, 2.5, 1} × 103 and also the whole-brain
estimation was performed at Nmin = N. The intrinsic parameters of
themethodswere set to values indicated in Table 1, whichwere chosen
in accordance with the recommendations by their authors in Van
Leemput et al. (2001) and García-Lorenzo et al. (2009, 2011). The ob-
tained DSI values are shown in Fig. 10. Compared to the original

https://www.nitrc.org/projects/toads-cruise/
http://dbm.neuro.uni-jena.de/software/lst/
http://www.ia.unc.edu/MSseg/


Fig. 8. Significance of DSI differences for three patient groups w.r.t. TLL and overall. According toWilcoxon signed rank test at p b 0.05, the green, red and blue colors of row-column pairs
indicate significant improvement, significant deterioration or no significant difference, respectively.
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implementations of segmentation methods, the implementations
upgraded with SM-GMM showed significant (p b 0.05) improvement
of lesion segmentation performance for Nmin ≤ 25 ⋅ 103. Moreover,
with decreasing Nmin the changes in DSI were increasingly more signif-
icant (note the number of asterisks (*) at graph nodes), while the rela-
tive improvement between consecutive values of Nmin was the highest
and significant up to Nmin = 5 ⋅ 103.

In the following experiment, we study the performance of methods
atfixedminimal size of the subregionsNmin=5 ⋅ 103. The obtained DSIs
with respect to three groups of TLL, are shown in Fig. 6 for the three
original and upgraded lesion segmentation methods, while the differ-
ences of DSIs of the two implementations are shown in Fig. 7 for
each of the 30 MR image datasets. The Wilcoxon's signed rank
test was used to indicate whether a difference of DSIs was significant
(p b 0.01). The improvement of DSI was found significant on datasets
with mild and moderate TLLs for all three methods. In general, the me-
dian DSIs improved for all methods and over all groups of TLL (Fig. 6),
except for theVL'2001 ondatasetswith severe TLLwhere a small and in-
significant decrease in performance was observed (difference:−0.004;
p-value: 0.4). The proposed implementations of VL'2001, GL'2009 and
GL'2011 significantly improved the overall median DSIs by 0.01,
0.05and 0.07 (Fig. 7), respectively, at p-values equal or below 0.01.
Table 2
Median differences of the number of false positives (FP), number of true positives (TP), true po
ference rate (VDR), average symmetric surface distance (SD, in mm), lesion-wise true positive
original lesion segmentation methods, applied to images of patients with mild, moderate an
FNL indicate number of true positive, false positive and false negative lesions, respectively. ∂S a
dm(v, V) is the minimal of the Euclidean distances between a voxel v and voxels in a set V.

Criterion Segmentation method

VL'2001
(original vs. upgraded)

G
(

Mild Moderate Severe M

FP −239⁎ −221⁎ −223.5 −
TP −8 −20 −112 −
PPV ¼ TP

TPþ FP
0.01⁎ 0.02⁎ 0.01 0

TPR ¼ TP
TPþ FN

−0.01 −0.00 −0.01 −

DSI ¼ 2�PPV�TPR
PPVþTPR

0.01⁎ 0.01⁎ −0.00 0

VDR ¼ j FP− FNj
TPþ FN

−0.35⁎ −0.04 0.03 −

LPPV ¼ TPL
TPLþ FPL

0.01⁎ 0.02⁎ 0.03⁎ 0

LTPR ¼ TPL
TPLþ FNL

−0.02 0.00 −0.02† −

SD ¼ ∑s∈∂Sdmðs; ∂RÞ þ∑r∈∂Rdmðr; ∂SÞ
j∂Sjþj∂Rj

−0.53⁎ −0.21⁎ −0.03 −

⁎ Statistically significant (p b 0.01) improvement.
† Statistically significant (p b 0.01) deterioration of the performance.
Table 2 illustrates the differences between upgraded and original
methods by nine performance measures (see table for abbreviations).
The results indicate that the significant decrease in the number of
false positives (low FP) was consistently considerably higher than
decrease in true positive voxels (TP). This provided improved overlap
between the reference and the automated segmentations (higher DSI
and LPPV) due to significantly higher PPV, while the sensitivity (TPR,
LTPR) reduced slightly and at a lower rate than PPV, except on datasets
with mild lesion loads. There the TPR is more affected even if only a few
lesion voxels are not segmented, since the lesion volume is very small.
Additional improvements were achieved in terms of volumetric
measurements (lower VDR) and lower SD, thus indicating that the
use of stratified mixture model stabilized the performance of lesion
segmentation.

Fig. 9 shows lesion segmentations by the original and upgraded
implementations, where the latter generally exhibits a much lower
number of FPs. Furthermore, comparison of the three methods to
other three state-of-the-art methods in Fig. 6 indicates that in terms of
DSIs the LST andmethod by Souplet et al. (2008)were generally inferior
to original and upgraded implementation of the three tested methods
(VL'2001, GL'2009 and GL'2011), while the LTOADS method out-
performed all other methods on datasets with mild TLL. On datasets
sitive rate (TPR), positive predictive value (PPV), Dice similarity index (DSI), volume dif-
rate (LTPR) and lesion-wise positive predictive value (LPPV) between the upgraded and
d severe lesion loads. The FN indicates the number of false negative voxels, TPL, FPL and
nd ∂R indicate sets of the border voxels for automated and reference segmentations, and

L'2009
original vs. upgraded)

GL'2011
(original vs. upgraded)

ild Moderate Severe Mild Moderate Severe

7183⁎ −6817⁎ −3948.5 −4724⁎ −4500⁎ −2173
141.5 −572† −1018.5 −112.5† −350† −585
.05⁎ 0.23⁎ 0.18⁎ 0.05⁎ 0.22⁎ 0.13⁎

0.20† −0.13† −0.13 −0.17† −0.08† −0.08

.07⁎ 0.15⁎ 0.01 0.07⁎ 0.15⁎ 0.02

10.83 −1.66⁎ 0.00 −7.30⁎ −1.10⁎ 0.00

.02⁎ 0.05⁎ 0.05 0.05⁎ 0.19⁎ 0.21⁎

0.08† −0.15† −0.07† −0.16† −0.15† −0.09

3.44⁎ −3.73⁎ −0.43 −3.12 −2.70⁎ −0.20



Fig. 9. Examples of segmentations by the original and upgraded (by the proposed stratified mixture model) lesion segmentation methods, applied on datasets with (a) moderate and
(b) mild TLLs. Segmentation results labeled as true positives (green), false negatives (blue) or false positives (red) are superimposed on the FLAIR images.
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with moderate and severe TLL and across all datasets the upgraded
implementation of uGL'2011 (the GL'2011 upgraded by the proposed
SM-GMM) clearly had superior performance. This was also verified by
Wilcoxon's signed rank tests, which showed that the corresponding
changes were also statistically significant (cf. Fig. 8).

Discussion

In this paper, we proposed a novel modeling approach for unsuper-
vised estimation of complex distributions of msMR intensities of brain
structures. Modeling has a crucial impact on the performance of unsu-
pervised, and also some supervised, methods for automated segmenta-
tion of normal brain structures and pathological structures such as
white-matter lesions (Lladó et al., 2012; García-Lorenzo et al., 2013).
In practice,multisequenceMR images of brain structures are observations
of a great variety of intensity sources, affected by both acquisition imper-
fections and natural or pathological anatomical variations. Attempts to
incorporate into generative models as many intensity sources as possible
result in an increased complexity of such models and thus their robust
estimation, especially in an unsupervised learning, presents a huge
challenge.

As recently demonstrated by Xiao et al. (2010), the whole-brain
structure intensities are better modeled by mixture models, primarily
due to anatomy-specific intensity variations across different parts of
the brain. Several approaches that iterate between model selection
and parameter estimation (Khayati et al., 2008; Sudre et al., 2014)
were proposed to facilitate the application of such models in unsuper-
vised learning, but they are more complex as they require explicit
modeling of abnormal structures like lesions. Although such approaches
model intratissue spatial variability, the spatial relationship is not
explicitly modeled and is not considered during the estimation.

The proposed approach to msMR intensity modeling employs
stratified mixture models, wherein the central assumption is that the
otherwise complex generative model of the whole-brain distribution



Fig. 10. The Dice similarity indices (DSI) for the three lesion segmentationmethods (Table
1) tested at different values of parameter Nmin. The DSI values were averaged over 30 MR
datasets. The asterisks (*) at the graph nodes indicate significance of the difference from
the original implementation, and the asterisks at the graph edges indicate significance of
the difference from the previous value of the parameter according to Wilcoxon’s signed
rank test.
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of msMR intensities reduces to a tractable parametric form at a small
enough brain subregion. This is because various sources of MR intensity
variability, like spatially smoothmultiplicativeMRbiasfield (Vovk et al.,
2007) or natural variability of brain structures (Xiao et al., 2010), etc.,
can be considered negligible at small brain subregions (Shattuck et al.,
2001). Although such local estimation of msMR intensity distribution
has been introduced before (Scherrer et al., 2009; Tohka et al., 2010)
for segmentation of MR images of normal brains, application of these
methods to segmentation of MR brain images containing lesions is not
straightforward. The reason is that in different small brain subregions
the varying sizes and number of lesions impose a varying and possibly
substantial fraction of outliers, which could adversely impact model
estimation. Besides, the samples of NABS intensity observations can be
highly unbalanced, which is even more prominent at local brain subre-
gions (Fig. 1).

Our approach involves the use of a spatial stratification of the brain
into subregions or strata, which are mutually exclusive, collectively
exhaustive, and contain more homogeneous subsamples. Many algo-
rithms can be proposed for this purpose and incorporated into the strat-
ified mixture modeling approach. In this paper, we used a new spatial
stratification method (Algorithm 1) which subdivides a tentative
segmentation of CSF, GM and WM structures by performing rectilinear
splits in a hierarchical manner. Another very important goal of the algo-
rithm is to ensure that each stratum contains some minimal number
of observations (parameter Nmin) and some minimal fraction (parame-
ter πmin) of observations for each of the three structures. This is required
to obtain good mixture estimates. Herein we used the recently devel-
oped robust estimator of unbalanced mixtures (Galimzianova et al.,
2015) to estimate the stratified mixture models, which provided accu-
rate generative models of the whole-brain distribution of msMR inten-
sities of NABS on 30 real msMR images of MS patients.

The main advantage of the proposed stratified mixture modeling is
the stratum-wise estimation of simple three-component mixtures of
normal-appearing structures. Such a model was assumed valid within
a stratum that captures a small region of the brain, since the intensity
variations may be neglected. Hence, underestimation is not a problem.
The main benefit is that the model is able to accurately capture the
overlap of the intensity distributions of normal structures, whereas
overfitting within stratum is avoided by using such a simple but
constrained model and robust estimation (Galimzianova et al., 2015).
We tested two models, one based on parameter- and the other
on model-wise recombination over strata into a whole-brain model,
i.e., SP-GMM and SM-GMM, respectively. Of the two proposed models,
the SM-GMM better captures the MR intensity distributions according
to better goodness-of-fit and more accurate segmentation results
(Figs. 4 and 5, respectively). A general observation was that with higher
number of strata the estimated mixture model better adapts to the
actual MR intensity distribution.

Other similarly complex models like the M-GMM were previously
used to capture spatially-varying structural properties implicitly
(Ashburner and Friston, 2005; Xiao et al., 2010). In addition to rendering
the problem of selecting optimal structure-specific number of compo-
nents (or model order), the use of M-GMM has another important defi-
ciency. The M-GMM attempts to model the overall MR intensity
distribution of a certain structure, in which several intensity distribu-
tions from various locations and structure interfaces may substantially
overlap. Clearly, the estimation of model parameters based on the spa-
tial stratification of observed multi-sequence MR intensities is a more
robust approach compared to a direct estimation of model parameters
based solely on the MR intensities. This is apparent when comparing
the performance of M-GMM vs. SP-GMM, which is a simple three-
component mixture model estimated through the proposed spatial
stratification approach (Figs. 4 and 5). For high number of strata the
SP-GMM even outperformed the M-GMM. The increased flexibility of
SM-GMM, achieved by recombining local models over strata, only
further improved the modeling of msMR intensities.

To analyze dependence of the performance on the implementation
of spatial stratification, the MR intensity modeling experiments in
Section MR intensity modeling were performed with k-means based
spatial stratification. The obtained JD and DSI values were comparable
to the spatial stratification in Algorithm 1, showing similar patterns of
JD and DSI with respect to Nmin as in Figs. 4 and 5. Hence, as long as the
stratification criteria (cf. Section Robustmodel estimation) aremet, a par-
ticular implementation of spatial stratification does not seem to have a
large impact on the performance of the proposed stratified mixture
modeling.

The proposed stratified mixture model was implemented into three
unsupervised lesion segmentation methods (Van Leemput et al., 2001;
García-Lorenzo et al., 2009, 2011), which detect lesions as model out-
liers, and was validated against the original implementations and
three other state-of-the-art methods on 30 msMR image datasets of
MS patients with various TLLs. Compared to original implementations,
the upgraded implementations using the SM-GMM generally exhibited
improved performance of lesion segmentation,measured as the overlap
between the reference manual and obtained automated segmentations
(Figs. 6 and 7). Comparison to the state-of-the-art methods LST and
Souplet et al. showed inferior performancewith respect to both original
and upgraded implementation of the three tested methods (VL'2001,
GL'2009 and GL'2011). On the other hand, LTOADS method out-
performed all methods on datasets with mild TLL, while on datasets
with moderate and severe TLL and across all datasets the uGL'2011
based on SM-GMM had superior performance (Fig. 8).

In general, the DSIs weremuch lower on datasets with mild than on
thosewithmoderate and severe TLL. Themain reason is that on datasets
with small TLL, the usually large amount of FPs has a much higher im-
pact on the overall DSI score. The value of DSI may thus be misleading
in terms of usefulness of the obtained segmentation, however, as
Fig. 9 demonstrates, the use of the stratifiedmixturemodel substantially
reduced the amount of FPs, especially on datasets with mild TLL
(Table 2). The DSIs either remained the same or improved for all three
tested methods.

The use of the stratified mixture model also resulted in higher con-
sistency of lesion segmentation across patient datasets and among the
three tested methods (Fig. 9). Consistent performance is one of the
critical requirements for the application of lesion segmentation
methods for diagnosis andmanagement of treatment of diseases causing
white-matter lesions (Vrenken et al., 2013), and for large multi-center
clinical studies, as it ensures that quantitative measurements of lesions
are consistent between different patients and on the same patient over
time.
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Conclusions

The novel stratified mixture modeling approach results in accurate
and robust unsupervised estimation of the whole-brain MR intensity
model. By reducing the otherwise complexwhole-brainmodel to a trac-
table parametric mixture model through spatial stratification of the
brain into subregions and performing robust local model estimation,
the whole-brain model can be accurately recombined from the local
models. The stratified mixture modeling was incorporated into three
unsupervised lesion segmentation methods and, compared to the origi-
nal modeling approaches, significantly improved lesion segmentation
on 30 real msMR images of patients with MS according to increased
Dice similarity indices and lower number of FPs.
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